Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22087-22092    https://doi.org/10.11896/cldb.19110230
  金属与金属基复合材料 |
波纹辊轧制温度对镁/铝复合板界面组织及力学性能的影响
锅渺1,2,3, 李莎1,2,3, 赵利平1, 韩建超1,2,3, 王涛1,2,3
1 太原理工大学机械与运载工程学院,太原 030024
2 太原理工大学先进金属复合材料成形技术与装备教育部工程研究中心,太原 030024
3 太原理工大学中澳联合研究中心,太原 030024
Effect of Rolling Temperature of Corrugated Roll on the Interface Structure and Mechanical Properties of Mg/Al Composite Plate
GUO Miao1,2,3, LI Sha1,2,3, ZHAO Liping1, HAN Jianchao1,2,3, WANG Tao1,2,3
1 College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 Engineering Research Center of Advanced Metal Composites Forming Technology and Equipment, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
3 TYUT-UOW Joint Research Centre, Taiyuan University of Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 5675KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用波纹型轧辊制备镁铝复合板,与传统平轧方法作对比,研究轧制温度对复合板界面结合状态、基体显微组织和力学性能的影响。同时建立了二维轧制模型,分析了波纹辊轧制和平辊轧制过程中应变的变化。结果表明,相同的轧制温度下,波纹辊轧制可以有效提高镁铝双金属的结合效率,实现有效结合的临界温度从平辊轧制的300~350 ℃降低至250 ℃。随着轧制温度的升高,元素扩散层厚度逐渐增加,未发现中间化合物生成。仿真结果分析表明,波谷处的等效应变明显高于波峰处,平辊轧制的等效应变介于波峰与波谷之间,轧制温度的变化对等效应变的影响较小。波纹辊制备镁铝复合板的抗拉强度高于同温度下平辊制备的复合板,复合板抗拉强度随轧制温度的升高先升高后降低,在350 ℃时抗拉强度达到峰值(310 MPa)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
锅渺
李莎
赵利平
韩建超
王涛
关键词:  镁铝复合板  波纹辊轧制  显微组织  力学性能    
Abstract: In this study, thecorrugated roll was used to prepare the magnesium aluminum composite plate. Compared with the traditional flat rolling, the effect of rolling temperature on the bonding interface state, microstructure and mechanical properties of the composite plate was studied. At the same time, a two-dimensional rolling model was established to analyze the change of strain during the rolling process. The results showed that at the same rolling temperature, corrugated roll could effectively improve the bonding efficiency of Mg/Al bimetal, and the critical bonding temperature reduced from 300—350 ℃ to 250 ℃. With the increase of rolling temperature, the thickness of diffusion layer increased gradually, and no intermediate compounds were found. According to the simulation results, the equivalent strain at the trough was obviously higher than that of peak, and the strain of flat rolling was between the peak and the trough. Rolling temperature exhibited little effect on the equivalent strain. The tensile strength of Mg/Al composite plate made by corrugated roll was higher than that made by flat roller at the same temperature. The tensile strength of composite plate increased first and then decreased with the increase of rolling temperature, and reached the peak value as 310 MPa at 350 ℃.
Key words:  Mg/Al composite plate    corrugated roll    microstructure    mechanical property
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  TG335.81  
基金资助: 国家自然科学基金重点项目(U1710254);国家自然科学基金青年项目(51904205);山西省科技重大专项(20181101008);山西省应用基础研究项目(201801D221221)
通讯作者:  hanjianchao@tyut.edu.cn   
作者简介:  锅渺,2017年9月至2019年11月在太原理工大学先进金属复合材料成形技术与装备教育部工程研究中心学习,主要从事金属复合材料加工的研究。韩建超,太原理工大学机械与运载工程学院,副教授。2016年7月毕业于哈尔滨工业大学材料科学与工程学院,材料加工工程博士。同年加入太原理工大学机械与运载工程学院工作至今,主要从事金属复合板轧制成形工艺的研发,重点研究复合板波纹辊轧制工艺开发及优化、显微组织与力学性能评价、界面力学行为等。在国内外重要期刊发表文章20多篇,申报发明专利10余项。
引用本文:    
锅渺, 李莎, 赵利平, 韩建超, 王涛. 波纹辊轧制温度对镁/铝复合板界面组织及力学性能的影响[J]. 材料导报, 2020, 34(22): 22087-22092.
GUO Miao, LI Sha, ZHAO Liping, HAN Jianchao, WANG Tao. Effect of Rolling Temperature of Corrugated Roll on the Interface Structure and Mechanical Properties of Mg/Al Composite Plate. Materials Reports, 2020, 34(22): 22087-22092.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110230  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22087
1 Song D, Li C, Liang N N, et al. Mater and design, 2019 (166), 107621.2 Mishra R R, Sharma A K. Materials and Design, 2016, 112, 97.3 Simar A, Bréchet Y, Meester B B, et al. Progress in Materials Science, 2012, 57, 95.4 Priel E, Ungarish Z, Navi N U. Journal of Materials Processing Technology, 2016, 236, 103.5 Xu X J. Study on rolling composite technology of Al/Mg/Al laminated composite. Master's Thesis, Nanjing University of technology, China, 2009(in Chinese).徐希军. Al/Mg/Al叠层复合材料轧制复合工艺研究. 硕士学位论文, 南京理工大学, 2009.6 Wang C. Damping behavior of Mg/Al laminated sheets. Master's Thesis, Harbin Institute of Technology, China, 2013(in Chinese).王琛. Mg/Al多层复合板阻尼行为研究. 硕士学位论文, 哈尔滨工业大学, 2013.7 Macwan A, Jiang X Q, Li C, et al. Materials Science and Engineering: A, 2013, 587, 344.8 Nie H H, Liang W, Chi C Z, et al. Journal of Management, 2015, 68(5),1.9 Yan C K, Chi C Z, Liang W, et al. Journal of Plasticity Engineering, 2013, 20(5), 87(in Chinese).闫辰侃, 池成忠, 梁伟. 等. 塑性工程学报, 2013, 20(5),87.10 Liu N, Chen L, Fu Y, et al. Journal of Materials Processing Technology, 2019, 267,196.11 Yan L. Finite element simulation and technics research during the rolling process of AZ31 magnesium alloy sheet. Master's Thesis, Hunan University, China, 2010(in Chinese).颜亮. AZ31镁合金板材轧制过程的有限元模拟与工艺研究. 硕士学位论文, 湖南大学, 2010.12 Eizadjou M, Manesh H D, Janghorban K. Materials and Design, 2009, 30(10), 4156.13 Hosseini S A, Hosseini M, Manesh H D. Materials and Design, 2011, 32(1), 76.14 Yousefi M V, Toroghinejad M R, Rezaeian A. Materials and Design, 2014, 53, 174.15 Li S, Gao X Y, Wang T. Hot Working Technology, 2018, 47(23), 38(in Chinese).李莎, 高翔宇, 王涛.热加工工艺, 2018, 47(23), 38.16 Wang T, Li S, Ren Z K, et al. Materials Letters, 2019, 234, 79.17 Xu F Y. The recrystallization behavior of magnesium alloy AZ31 by rol-ling. Master's Thesis, Hunan University, China, 2006(in Chinese).许芳艳. 轧制板材镁合金AZ31的再结晶行为. 硕士学位论文, 湖南大学, 2006.18 Shimoyama K, Yokoyama S, Kaneko S, et al. Materials Science and Engineering: A, 2014, 611, 58.19 Maryam A, Abdolkarim S S. Journal of Materials Engineering and Performance, 2018, 27, 3508.20 Ebrahimi S H S, Dehghani K, Aghazadeh J, et al. Materials Science and Engineering A, 2018, 718, 311.
[1] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[6] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[7] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[8] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[9] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[10] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[11] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[12] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[13] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[14] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[15] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed