Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22093-22099    https://doi.org/10.11896/cldb.19110108
  金属与金属基复合材料 |
二次镍层复镀对Ni-MoS2复合涂层结构和摩擦承载能力的影响
程倩1, 姚正军1,2, 张帆1, 牛永康1
1 南京航空航天大学材料科学与技术学院,南京 211106
2 面向苛刻环境材料制备与防护技术工业与信息化部重点实验室,南京 211106
Effect of Two-step Electrochemical Composite Deposition on the Coating Structure and Friction Bearing Capacity of Ni-MoS2 Composite Coatings
CHENG Qian1, YAO Zhengjun1,2, ZHANG Fan1, NIU Yongkang1
1 College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2 Key Laboratory of Materials Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, Nanjing 211106, China
下载:  全 文 ( PDF ) ( 6594KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对MoS2颗粒导电性引起的颗粒团聚和优先沉积现象而造成的MoS2复合涂层结构疏松多孔、硬度降低等问题,采用二次镍层复镀的方式对Ni-MoS2涂层中的沉积缺陷和枝晶间隙进行填充和修复,从而实现对其疏松结构的强化。研究结果表明,二次镍层复镀将Ni-MoS2涂层表面的类枝晶状形貌转变为结节状形貌,相比于疏松的Ni-MoS2涂层,Ni-MoS2+Ni涂层中的沉积缺陷得到填充和修复,涂层致密度增加,涂层的硬度(282.0HV0.1)升高为Ni-MoS2涂层硬度(130.7HV0.1)的两倍多。二次镍层复镀使更多起到支撑和粘结作用的镍沉积进入涂层,修复沉积缺陷,强化涂层结构,使MoS2复合涂层在保持良好减摩润滑性能的同时,增强涂层的摩擦承载能力,延长涂层在高载荷摩擦条件下的服役寿命。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程倩
姚正军
张帆
牛永康
关键词:  自润滑  Ni-MoS2  涂层  二次镍层复镀  摩擦承载能力    
Abstract: Due to the high porosity of Ni-MoS2 composite coatings caused by the preferential deposition of MoS2 particles, the two-step electrochemical composite deposition was employed to repair the deposition deficiency of Ni-MoS2 coatings. The results demonstrated that the second nickel plating transforms the dendrite feature of Ni-MoS2 coatings into the nodular characteristics of Ni-MoS2+Ni coatings. Contrary to the loose Ni-MoS2 coatings, the densification of Ni-MoS2+Ni coatings got increased, with fewer deposition defects observed. The microhardness of Ni-MoS2+Ni coatings (282.0HV0.1) was approximately twice as much as that of Ni-MoS2 coatings (130.7HV0.1). Abundant nickel element was introduced to the loose MoS2+Ni coatings after the second nickel deposition, for the repairment of its deposition defects and the reinforcement of its porous structure. Therefore, Ni-MoS2+Ni coatings could preserve excellent antifriction and carry greater wear load for a longer time.
Key words:  self-lubrication    Ni-MoS2    coating    two-step deposition    friction bearing capacity
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  TG174.44  
通讯作者:  yaozj@nuaa.edu.cn   
引用本文:    
程倩, 姚正军, 张帆, 牛永康. 二次镍层复镀对Ni-MoS2复合涂层结构和摩擦承载能力的影响[J]. 材料导报, 2020, 34(22): 22093-22099.
CHENG Qian, YAO Zhengjun, ZHANG Fan, NIU Yongkang. Effect of Two-step Electrochemical Composite Deposition on the Coating Structure and Friction Bearing Capacity of Ni-MoS2 Composite Coatings. Materials Reports, 2020, 34(22): 22093-22099.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110108  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22093
1 Elianov O, Garusi S, Rosentsveig R, et al. Surface and Coatings Technology, 2018, 353,116.2 Walsh F C, Ponce de Leon C. The International Journal of Surface Engineering and Coatings, 2014, 92(2),83.3 Meng F, Han H, Gao X, et al. Tribology International, 2018, 118,400.4 Du S, Li Z, He Z, et al. Tribology International, 2018, 128,197.5 He Y, Wang S C, Walsh F C, et al. Surface and Coatings Technology, 2016, 307,926.6 Lampke T, Wielage B, Dietrich D, et al. Applied Surface Science, 2006, 253(5),2399.7 Huang Z J, Xiong D S. Surface and Coatings Technology, 2008, 202(14),3208.8 Cardinal M F, Castro P A, Baxi J, et al. Surface and Coatings Technology, 2009, 204(1-2),85.9 Zou T Z, Tu J P, Zhang S C. Materials Science and Engineering: A, 2006, 426(1-2),162.10 Li J L, Xiong D S, Huo M F, et al. Wear, 2008, 265(3-4),566.11 Liu X, Shi X, Wu C, et al. Materials Chemistry and Physics, 2017, 198,145.12 García-Lecina E, García-Urrutia I, Díez J A, et al. Electrochimica Acta, 2013, 114,859.13 García-Lecina E, García-Urrutia I, Díez J A, et al. Surface and Coatings Technology, 2012, 206(11-12),2998.14 Lekka M, Zanella C, Klorikowska A, et al. Electrochimica Acta, 2010, 55(27),7876.15 Bülbül F, Efeogˇlu I·. Crystallography Reports, 2010, 55(7),1177.16 Arslan E, Bülbül F, Alsaran A, et al. Wear, 2005, 259(7-12),814.17 Wang L M. Journal of Applied Electrochemistry, 2008, 38(2),245.18 Ma C, Yu W, Jiang M, et al. Ceramics International, 2018, 44(5),5163.19 Zhang Y, Epshteyn Y, Chromik R R. Tribology International, 2018, 123,296.20 Wu Yunxin. Wear, 1997,205, 64.
[1] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[2] 程海松, 刘岗, 雷刚, 谭俊, 陈春彦, 梁勇, 苏岳亮, 吴开颜, 杜永斌. 燃煤锅炉受热面高温腐蚀防护涂层技术研究进展[J]. 材料导报, 2020, 34(Z1): 433-435.
[3] 刘国熠, 赵晓明, 刘元军, 谌玉红. 不同隔热填料对双层涂层柔性复合材料热防护性能的影响[J]. 材料导报, 2020, 34(8): 8194-8199.
[4] 张梦清, 乔玉林, 吉小超, 周克兵, 张伟, 于鹤龙. 线圈扫描速度对感应熔覆NiCrBSi涂层组织与性能的影响[J]. 材料导报, 2020, 34(6): 6120-6125.
[5] 袁晓静, 关宁, 侯根良, 陈小虎, 马爽. 高温固体自润滑涂层的制备及可靠性的研究进展[J]. 材料导报, 2020, 34(5): 5061-5067.
[6] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[7] 李慧莹, 赵君文, 戴光泽, 韩靖, 李旭嘉. 钼酸钠含量对无铬锌铝涂层性能的影响[J]. 材料导报, 2020, 34(2): 2105-2109.
[8] 尹存宏, 李少波, 梁益龙. 钢铁材料摩擦层结构演变与干摩擦自润滑行为研究进展[J]. 材料导报, 2020, 34(19): 19134-19140.
[9] 张勇, 张耿飞, 张宇涛, 宁璠, 晁奕, 冯鹏发. CeO2掺杂Si-B复合涂层的制备及氧化行为[J]. 材料导报, 2020, 34(18): 18035-18038.
[10] 程灵, 韩钰, 马 光, 孟利, 杨富尧, 陈新, 董瀚. 特高压直流换流阀饱和电抗器用超薄取向硅钢涂层制备与性能评估[J]. 材料导报, 2020, 34(18): 18139-18144.
[11] 陈刚, 罗涛, 沈书成, 陶韬, 唐啸天, 薛伟, 夏义. 基于铝热反应FeCrNiCuAlSn0.5高熵合金涂层的制备[J]. 材料导报, 2020, 34(17): 17047-17051.
[12] 魏仕勇, 彭文屹, 赵文超, 康依凡, 陈斌, 鲍蓉蓉, 邓晓华. 等离子熔覆CoCrFeMnNi高熵合金涂层参数优化及组织与性能研究[J]. 材料导报, 2020, 34(17): 17052-17057.
[13] 张倩, 郑振荣, 赵晓明, 毛科铸, 罗丽娟. 高温下涂层织物传热过程的数值模拟[J]. 材料导报, 2020, 34(16): 16167-16171.
[14] 韩雪莹, 刘新利, 吴壮志, 段柏华, 王德志. 含难熔金属涂层的研究进展[J]. 材料导报, 2020, 34(13): 13146-13154.
[15] 汤鹏君, 李旭强, 翟海民, 李文生. 不同基体超音速火焰喷涂Cr3C2-20NiCr涂层的性能[J]. 材料导报, 2020, 34(12): 12115-12121.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed