Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16167-16171    https://doi.org/10.11896/cldb.19070011
  高分子与聚合物基复合材料 |
高温下涂层织物传热过程的数值模拟
张倩1, 郑振荣1, 赵晓明1, 毛科铸2, 罗丽娟2
1 天津工业大学纺织科学与工程学院,天津 300387;
2 航天材料及工艺研究所,北京 100076
Numerical Simulation of Heat Transfer Process of Coated Fabrics at High Temperature
ZHANG Qian1, ZHENG Zhenrong1, ZHAO Xiaoming1, MAO Kezhu2, LUO Lijuan2
1 School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
2 Institute of Aerospace Materials and Technology, Beijing 100076, China
下载:  全 文 ( PDF ) ( 3559KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 建立了高温下涂层碳纤维织物的传热数值模型,利用石英灯烧蚀实验对该模型进行了验证,并用该模型探究了高性能纤维种类对传热过程的影响,揭示了结构密度对涂层织物隔热性能的影响规律。结果表明:高温下涂层碳纤维织物传热数值模型能反映其传热过程,在135 s内模拟值与实验值的平均相对误差为9.47%。遇热115 s时,涂层玻璃纤维织物背温比涂层碳纤维织物背温低58 ℃,即涂层玻璃纤维织物隔热性能更好。在织物组织、纱线细度不变的情况下,当织物纬密不变,经密由100根/10 cm增加到180根/10 cm时,涂层玻璃纤维织物背温由601 ℃降低到553 ℃,温度相差48 ℃;当织物经密不变,纬密由100根/10 cm逐渐增加到160根/10 cm时,涂层玻璃纤维织物背温由574 ℃逐渐降低至555 ℃,温度相差19 ℃,隔热性能逐渐增强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张倩
郑振荣
赵晓明
毛科铸
罗丽娟
关键词:  涂层织物  隔热性能  传热数值模型  高性能纤维    
Abstract: The numerical model of heat transfer of coated carbon fiber fabrics at high temperature was established. The model was validated by quartz lamp ablation test, and then was used to investigate the effect of high-performance fiber types on heat transfer process, and reveal the inf-luence of structural density on the thermal insulation properties of coated fabrics. The results show that the numerical model of heat transfer of coated carbon fiber fabric can reflect the heat transfer process at high temperature. The average relative error between simulated and experimental values is 9.47% in 135 s. When it is up to 115 s, the temperature of the back of the coated glass fiber fabric is 58 ℃ lower than that of the coated carbon fiber fabric, that is, the coated glass fiber fabric has good heat insulation performance. In the case of the same fabric weave pattern and yarn fineness, when the weft density of the fabric is unchanged and the warp density is increased from 100/10 cm to 180/10 cm, the tempera-ture of the back of the coated glass fabric is reduced from 601 ℃ to 553 ℃. The temperature difference is 48 ℃. When the warp density is the same and the weft density is gradually increased from 100/10 cm to 160/10 cm, the temperature of the back of the coated glass fabric is gradually reduced from 574 ℃ to 555 ℃, and the temperature difference is 19 ℃, indicating that its thermal insulation performance is gradually enhanced.
Key words:  coated fabric    thermal insulation properties    numerical model of heat transfer    high performance fiber
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TS101.3  
基金资助: 天津科委自然科学基金(18JCYBJC86600);中国纺织工业联合会科技指导性项目(2017030);天津市教委科研计划项目(2018KJ194)
通讯作者:  tianjinzhengzr@163.com   
作者简介:  张倩,2020年3月毕业于天津工业大学,获得工学硕士学位。研究生期间研究柔性纺织品加工与开发。
郑振荣,天津工业大学副教授、硕士研究生导师。2010年毕业于天津工业大学纺织学院并留校任教至今。天津市“131”创新型人才培养工程第二层次人选。主要从事功能纺织品的制备和性能研究,尤其是热防护纺织品的三维几何建模,传热传质过程的数值模拟等工作。
引用本文:    
张倩, 郑振荣, 赵晓明, 毛科铸, 罗丽娟. 高温下涂层织物传热过程的数值模拟[J]. 材料导报, 2020, 34(16): 16167-16171.
ZHANG Qian, ZHENG Zhenrong, ZHAO Xiaoming, MAO Kezhu, LUO Lijuan. Numerical Simulation of Heat Transfer Process of Coated Fabrics at High Temperature. Materials Reports, 2020, 34(16): 16167-16171.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070011  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16167
1 Guo Y Z. Fiber Composites,2017,34(1),7(in Chinese).
郭云竹.纤维复合材料,2017,34(1),7.
2 Ma X P, Guo Y L, Zhang W. Aerospace Manufacturing Technology, 2018(1), 2(in Chinese).
马秀萍,郭亚林,张祎.航天制造技术,2018(1),2.
3 Yu G H, Han Q, Qu L T. Chinese Journal of Polymer Science,2019,37(6),535.
4 Han X. Building Materials Development Orientation,2018,16(16),19(in Chinese).
韩翔.建材发展导向, 2018,16(16),19.
5 Zheng Z R, Wang H M, Zhang Y S, et al. Materials Science and Technology,2016,24(2),86(in Chinese).
郑振荣,王红梅,张玉双,等.材料科学与工艺,2016,24(2),86.
6 Sun Y C, Feng X W, Cheng Z H. Journal of Textile Research,2005 (2),74(in Chinese).
孙玉钗,冯勋伟,程中浩.纺织学报,2005 (2),74.
7 Zhang F, Wu C E, Song M X, et al. Jiangxi Building Materials, 2015(12),235(in Chinese).
张凡,吴翠娥,宋明星,等.江西建材,2015 (12),235.
8 Sun Y C, Feng X W, Liu C Y. Journal of Donghua University(Natural Science),2006(2),50(in Chinese).
孙玉钗,冯勋伟,刘超颖.东华大学学报(自然科学版),2006(2),50.
9 Sun Y C, Chen X G, Cheng Z H, et al. International Journal of Clothing Science and Technology,2010,22(2/3),161.
10 James R L, William E M, Kuldeep P. Fire Technology,2010,46(4),833.
11 Cimilli S, Nygun F B U, Candan C. Textile Research Journal,2008, 78(1), 53.
12 Zhang G W, Hu P, Liu M H.Science China(Technological Sciences),2017,60(5),668.
13 Wang J D, Fan LP, Pang M Y. Journal of System Simulation,2018,30(1),45(in Chinese).
王继东,范丽鹏,庞明勇.系统仿真学报,2018,30(1),45.
14 Zhang B, Li X D. Journal of Composite Materials,2018,35(10),2786(in Chinese).
张拜,李旭东.复合材料学报,2018,35(10),2786.
15 Zhang B, Li X D. Journal of Huazhong University of Science and Techno-logy(Natural Science),2018,46(7),57(in Chinese).
张拜,李旭东.华中科技大学学报(自然科学版),2018,46(7),57.
16 Riccio A, Damiano M, Zarrelli M, et al.Journal of Reinforced Plastics and Composites, 2014,33(7),619.
17 Riccio A,Damiano M, Zarrelli M, et al.Applied Composite Materials,2014,21(3),511.
18 Wan A L,Miu X H, Zhang L J, et al. Journal of Textile Research,2017,38(5),53(in Chinese).
万爱兰,缪旭红,张灵婕,等.纺织学报,2017,38(5),53.
19 Chen Y,Wang Y X, Zhou N, et al. Textile Equipment,2018,45(2),1(in Chinese).
陈雨,王益轩,周能,等.纺织器材,2018,45(2),1.
20 Liu G Y, Li J M, Zhao X M. Journal of Textile Science and Engineering,2018,35(2),7(in Chinese).
刘国熠,李建明,赵晓明.纺织科学与工程学报,2018,35(2),7.
No related articles found!
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed