Please wait a minute...
材料导报  2020, Vol. 34 Issue (12): 12115-12121    https://doi.org/10.11896/cldb.19060210
  金属与金属基复合材料 |
不同基体超音速火焰喷涂Cr3C2-20NiCr涂层的性能
汤鹏君, 李旭强, 翟海民, 李文生
兰州理工大学有色金属先进加工与再利用国家重点实验室,兰州 730050
High Velocity Oxygen Fuel (HVOF)
TANG Pengjun, LI Xuqiang, ZHAI Haimin, LI Wensheng
State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 15629KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用超音速火焰(HVOF)喷涂技术在不同基体(38CrMoAl和316L)上制备了Cr3C2-20NiCr涂层。利用扫描电镜(SEM)、X射线衍射(XRD)仪、拉曼(Raman)光谱仪分别对涂层的微观结构和物相进行分析,并利用万能力学试验机、冲击试验机、马弗炉、高温摩擦试验机和高温维氏显微硬度计分别测试涂层的拉伸结合强度、抗机械冲击性能、抗热冲击性能、耐磨损性能及高温显微硬度。结果表明:采用HVOF喷涂技术在38CrMoAl、316L基体上制备的Cr3C2-20NiCr涂层均表现出良好的拉伸断裂强度(均超过70 MPa),拉伸断裂机理主要表现为脆性断裂,局部表现为韧性断裂;机械冲击失效形式主要为层间开裂和涂层内部硬质颗粒剥离两种方式;316L基体硬度较38CrMoAl高,粉末颗粒冲击较硬基体使其变形充分,从而使316L基体涂层具有相对较低的孔隙率(3.83%),因此,316L基体涂层的抗热冲击、抗氧化和耐磨损性能相比38CrMoAl基体涂层好;两种涂层室温时主要发生磨粒磨损,600 ℃时涂层硬度降低,主要磨损机理为氧化磨损、剥层磨损并伴随着轻微的磨粒磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤鹏君
李旭强
翟海民
李文生
关键词:  Cr3C2-20NiCr涂层  超音速火焰(HVOF)  机械冲击  热冲击  高温显微硬度    
Abstract: The Cr3C2-20NiCr coatings were prepared on 38CrMoAl and 316L substrate by high velocity oxygen fuel (HVOF) spraying. The microstructure and phase of the coatings were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectrometer, and the bonding strength, mechanical impact resistance, thermal shock resistance, wear resistance and high temperature microhardness of the Cr3C2-20NiCr coatings were tested. The results showed that Cr3C2-20NiCr coatings deposited on both 38CrMoAl and 316L substrate by HVOF exhibited good bonding strength (more than 70 MPa), and the tensile fracture mechanisms of the coatings were mainly characterized by brittle fracture and localized ductile fracture. The mechanical impact failure forms were mainly two ways of interlayer cracking and detachment of hard particles from bond phase inside the coatings. The hardness of 316L substrate was higher than that of 38CrMoAl substrate, and the impact of powder particles on 316L substrate made them fully deformed, resulting in a relatively low porosity (3.83%). Therefore, the thermal shock resis-tance, oxidation resistance and wear resistance of the coatings deposited on 316L substrate were better than that of the coatings deposited on 38CrMoAl substrate. Abrasive wear mainly occurred in the two coatings at room temperature, while hardness of the coatings decreased at 600 ℃ and the main wear mechanisms were oxidation wear and delamination wear, accompanied by slight abrasive wear.
Key words:  Cr3C2-20NiCr coatings    high velocity oxygen fuel (HVOF)    mechanical impact    thermal shock    high temperature microhardness
                    发布日期:  2020-05-29
ZTFLH:  TG174. 4  
基金资助: 国家自然科学基金(51674130);国家重点研发计划国际科技合作项目(2016YFE0111400);甘肃省国际科技合作特派员计划(17JR7WA017);甘肃省重点研发计划项目(17YF1WA159)
通讯作者:  liws@lut.edu.cn   
作者简介:  汤鹏君,2013年6月毕业于上海理工大学。现就读于兰州理工大学,材料科学与工程学院研究生,主要从事高温耐磨蚀涂层的研究。
引用本文:    
汤鹏君, 李旭强, 翟海民, 李文生. 不同基体超音速火焰喷涂Cr3C2-20NiCr涂层的性能[J]. 材料导报, 2020, 34(12): 12115-12121.
TANG Pengjun, LI Xuqiang, ZHAI Haimin, LI Wensheng. High Velocity Oxygen Fuel (HVOF). Materials Reports, 2020, 34(12): 12115-12121.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060210  或          http://www.mater-rep.com/CN/Y2020/V34/I12/12115
1 Chen Y, Hang L N, Zhang C, et al. Chemical Engineering & Machinery,2018,45(5),533(in Chinese).
陈彦,杭丽娜,张程,等.化工机械,2018,45(5),533.
2 Sun F W, He L Q, Chen Q, et al. Valve,2018,216(2),17(in Chinese).
孙丰位,贺乐全,陈群,等.阀门,2018,216(2),17.
3 Jimmy M, Varinder K M, Pallav G. Journal of Applied Science and Engineering,2017,20(4),445.
4 Lance M J, Thiesing B P, Haynes J A, et al. Oxidation of Metals,2019,91(5-6),691.
5 Zha B L, Wang H G, Xu K W. Lubrication Engineering,2005(4),24(in Chinese).
查柏林,王汉功,徐可为.润滑与密封,2005(4),24.
6 Shabana, Sarcar M M M, Suman K N S, et al. Materials Today Procee-dings,2015,2(4-5),2654.
7 Cui Y J, Wang C L, Tang Z H. Materials Science Forum,2016,852,1087.
8 Vashishtha N, Khatirkar R K, Sapate S G. Tribology International,2017,105,55.
9 Li W S, Tang P J, Shang L L, et al. Surface & Coatings Technology,2019,378,124926.
10 Bains P S, Grewal J S, Sidhu S S, et al. Materials Today: Proceedings,2017,4(2),369.
11 Matikainen V, Peregrina S R, Ojala N, et al. Surface & Coatings Technology,2019,370,196.
12 Hamatani H, Ichiyama Y, Kobayashi J. Science and Technology of Advanced Materials,2002,3(4),319.
13 Rendón-Belmonte M, Pérez-Quiroz J T, Terán-Guillén J, et al. International Journal of Electrochemical Science,2012,7(2),1079.
14 Gao S H, Liu M, Zhang X F, et al. Materials Review B:Research Papers,2018,32(10),25(in Chinese).
高硕洪,刘敏,张小锋,等.材料导报:研究篇,2018,32(10),25.
15 Zhou Y Y, Ma G Z, Wang H D, et al. Materials Review A:Review Papers,2016,30(9),90(in Chinese).
周羊羊,马国政,王海斗,等.材料导报:综述篇,2016,30(9),90.
16 Jin H, Li F Y, Li F S, et al. Tool Engineering,2015,49(11),10(in Chinese).
金湖,李方义,李法双,等.工具技术,2015,49(11),10.
17 Xu S H. Effects of plasma spraying technology parameter on microstructure and bonding strength of ZrB2-SiC-ZrC coating. Master's Thesis, Harbin University of Science & Technology, China,2017(in Chinese).
徐少辉.等离子喷涂工艺参数对ZrB2-SiC-ZrC涂层组织及结合强度的影响.硕士学位论文,哈尔滨理工大学,2017.
18 Qu Z G, He X H, Liu J N, et al. Surface Technology,2017,46(7),57(in Chinese).
渠志刚,贺辛亥,刘江南,等.表面技术,2017,46(7),57.
19 Lv Y H, Zhang Q F, Wu Z J, et al. China Surface Engineering,2015,28(6),81(in Chinese).
吕艳红,张启富,吴子健,等.中国表面工程,2015,28(6),81.
20 Lu P P. Study on the microstructures and properties of laser cladding on the surface of brake disc for the deep drilling rig. Master's Thesis, China University of Petroleum, China,2010(in Chinese).
陆萍萍.万米深井钻机刹车盘表面激光熔覆组织与性能研究.硕士学位论文,中国石油大学,2010.
21 Zhou W, Zhou K, Li Y, et al. Applied Surface Science,2017,416,33.
22 Dong H Y, Wu K M, Wang X L, et al. Wear,2018,402-403,21.
23 Feng X F, Xie G T, Zhang X H, et al. Journal of Tianjin Institute Technology,1998,14(S1),43.
No related articles found!
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed