Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19134-19140    https://doi.org/10.11896/cldb.19070250
  金属与金属基复合材料 |
钢铁材料摩擦层结构演变与干摩擦自润滑行为研究进展
尹存宏1,2, 李少波1, 梁益龙1,2,3
1 贵州大学机械工程学院,贵阳 550025
2 贵州省材料结构与强度重点实验室,贵阳 550025
3 贵州大学材料与冶金学院,贵阳 550025
A Review on Microstructure Evolution in a Friction-induced Layer and
the Self-lubricating Behavior During Dry Sliding Friction of Steels
YIN Cunhong1,2, LI Shaobo1, LIANG Yilong1,2,3
1 College of Mechanical Engineering, Guizhou University, Guiyang 550025, China
2 Guizhou Key Laboratory for Mechanical Behavior and Microstructure of Materials, Guiyang 550025, China
3 College of Materials Science and Metallurgical Engineering, Guizhou University, Guiyang 550025, China
下载:  全 文 ( PDF ) ( 5168KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于产生了大量的塑性变形、摩擦热、氧化和组织结构演变,摩擦层的形成不仅影响着材料的摩擦磨损特性,还可能在摩擦条件和材料微观结构匹配合理的情况下引发自润滑行为。研究摩擦层和自润滑行为的微观机制可为在不加入添加剂的基础上,获得新的固态润滑方法及对应润滑机制提供重要的理论依据。
对磨材料的强度、硬度、层错能高低等特性差异将导致摩擦层结构演化形式、细化程度和深度均有所不同。特别是诸如低碳条状马氏体钢和珠光体钢等钢铁材料,因其具有马氏体束、块、条和珠光体中的铁素体、先共析相、渗碳体等亚结构特征,摩擦层内部结构的演变又与其他材料有所区别。干摩擦自润滑通常是因为表面氧化物和纳米级氧化颗粒的保护所致,但是材料不同或材料包含的微结构不同,能够形成的氧化物或氧化颗粒的类型和尺度亦有所不同。
国内外学者展开了大量有关摩擦层和自润滑行为的研究,他们从摩擦层内部材料冷作硬化、晶粒细化和动态再结晶等方面分析了摩擦层高应变引起的材料组织结构演变,以及不同微观组织材料所表现出的摩擦层和摩擦磨损特性差异。此外,还对摩擦引起的纳米晶/结构对材料摩擦磨损特性产生的影响展开了大量研究。最后,研究人员试图利用摩擦接触导致的高应变速率和高应变梯度来获得超细化晶粒以制备表层纳米结构和调控材料的摩擦磨损特性。
本文从塑性变形、结构演变规律和力学性能等方面综述了摩擦层的最新研究进展,讨论了影响摩擦层内部塑性变形程度的摩擦外载条件因素。另外,从摩擦层内部形成纳米结构、梯度结构和由表面氧化物颗粒形成的自润滑层等方面讨论了干摩擦过程中产生的自润滑现象及对应机制。最后,探讨了如何利用材料表层结构设计和预制自润滑层以获得优异的耐磨性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹存宏
李少波
梁益龙
关键词:  干摩擦  摩擦层  自润滑  塑性变形  固态润滑    
Abstract: Due to the plastic deformation, frictional heat, oxidation and structural evolution, the friction-induced layers can not only affect friction and wear characteristics of materials, but also can induce the self-lubricating behavior under a specific condition. The researches on mechanisms of friction-induced layers and self-lubricating behavior can be used to provide an important theoretical basis for obtaining new solid lubrication methods and corresponding lubrication mechanisms without adding additives. Providing new ideas for surface wear resistance treatments and wear resistant evaluation of components.
Different properties such as strength, hardness and stacking fault energy of materials will result in different micro structures evolution, refinement levels and depths of friction-induced layers. In particular, steels such as low-carbon martensitic steels and pearlitic steels with substructures such as ferrite, pro-eutectoid phase, cementite, etc., which led to different structure evolution in the friction-induced layer from other materials. Many studies have shown that nano-oxide particles can naturally form and provide a protective layer during dry sliding wear. However, different materials and structures cause different structural evolutions under plastic deformation during dry sliding, which may result in different structures and sizes of the formed nano-oxide particles.
Many researches on friction-induced layers and self-lubricating behaviors have been carried out, the structure evolution caused by high strain in friction-induced layers from the aspects of cold work hardening, grain refinement and dynamic recrystallization were analyzed. Also, friction and wear characteristics of materials with different microstructures and friction-induced layers were found out. In addition, many researchers focused on the effects of friction-induced nanocrystals/structures on the friction and wear characteristics of materials. And they attempted to obtain ultra-fine grains and nanostructures using the high strain rate and high strain gradient caused by frictional contact, which show good wear resistant characteristics.
In this paper, the latest research literatures of friction-induced layers are reviewed considering plastic deformation, structural evolution and mechanical properties, and the frictional external loads conditions affecting the degree of plastic deformation in the friction-induce layer are discussed. In addition, self-lubricating phenomena and the corresponding mechanism during dry sliding friction are discussed from the aspects of forming nanostructures, gradient structures and self-lubricating layers. Furthermore, it is discussed how to optimize the surface structure of materials and prefabricated self-lubricating layers to obtain excellent wear resistance of steels.
Key words:  dry sliding friction    friction-induced layer    self-lubrication    plastic deformation    solid lubricaiton
                    发布日期:  2020-11-05
ZTFLH:  TB 31  
基金资助: 国家自然科学基金(51671060);中国博士后科学基金面上资助(2019M663906XB)
通讯作者:  liangyilong@126.com   
作者简介:  尹存宏,讲师,2019年6月毕业于贵州大学,获得工学博士学位。于2019年7月入职贵州大学,主要从事关键基础部件摩擦学行为、抗疲劳制造和多载荷服役寿命评估及装备研发等方面的研究工作。以第一作者身份分别在Acta Materialia、Applied Surface Science等国际权威期刊上发表学术论文多篇,获得3项国家发明专利授权。
梁益龙,贵州大学教授,博士研究生导师,享受国务院政府特殊津贴。主持完成了国家自然科学基金、科技部创新基金项目等多个项目。团队主要研究方向为先进材料、化学热处理、表面功能化涂层以及摩擦磨损。
引用本文:    
尹存宏, 李少波, 梁益龙. 钢铁材料摩擦层结构演变与干摩擦自润滑行为研究进展[J]. 材料导报, 2020, 34(19): 19134-19140.
YIN Cunhong, LI Shaobo, LIANG Yilong. A Review on Microstructure Evolution in a Friction-induced Layer and
the Self-lubricating Behavior During Dry Sliding Friction of Steels. Materials Reports, 2020, 34(19): 19134-19140.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070250  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19134
1 Korshunov L G, Chernenko N L. The Physics of Metals and Metallography,2016,117(3),307.
2 Glaeser W A, Rigney D A. Wear,1978,46(1),241.
3 Luo Z P, Zhang H W, Hansen N, et al. Acta Materialia,2012,60(3),1322.
4 Liu X C, Zhang H W, Lu K. Acta Materialia,2015,96,24.
5 Zhu K Y, Vassel A, Brisset F, et al. Acta Materialia,2004,52(14),4101.
6 Hisashi Sato, Takashi Murase, Toshiyuki Fujii, et al. Acta Materialia,2008,56(17),4549.
7 Wisander D, Bill R C. Wear,1977,41(2),351.
8 Hirotaka Kato, Masato Sasase, Nobuaki Suiya. Tribology International,2010,43(5-6),925.
9 Liang C, Li C, Lv X X, et al. Wear,2014,312(1-2),29.
10 Yin C H, Liang Y L, Liang Y, et al. Acta Materialia,2019,166,208.
11 Padilla H A, Brad L Boyce, Corbett C Battaile, et al. Wear,2013,297(1-2),860.
12 Serle W, Dmitriev A I. Wear,2011,271(9-10),2198.
13 Serle W, Dmitriev A I, Orts-Gil G, et al. Tribology International,2013,62,155.
14 Werner Sterle, Andrey Dmitriev. Lubricants,2016,4(4),5.
15 Das D, Dutta A K, Ray K K. Philosophical Magazine Letters,2008,88(11),801.
16 Shi X L, Wang M, Xu Z S, et al. Materials & Design,2013,45,365.
17 Gu D D, Yves-Christian Hagedorn, Wilhelm Meiners, et al. Acta Mate-rialia,2012,60(9),3849.
18 Rigney D A. Wear,2000,245 1.
19 Rainforth W M. Wear,2000,245,162.
20 Chen X, Han Z, Lu K. Wear,2014,320,41.
21 Straffelini G, Molinari A, Tesi B,et al. Wear,1997,208,105.
22 Long M, Rack H J. Materials Science and Engineering C,2005,25(3),382.
23 Hurricks P L. Wear,1973,26(3),285.
24 Matsuzaki A, Bhadeshia H K D H, Harada H. Acta Metallurgica et Materialia,1994,42(4),1081.
25 Bhadeshia H K D H. Institute of Materials,1995,71.
26 Ki Myung Lee, Andreas A Polycarpou. Wear,2005,259(1-6),391.
27 Huang S J, Semenov V I, Shuster L S, et al. Wear,2011,271(5-6),705.
28 Beynon J H, Garnham J E. Wear,1995,157(1),81.
29 Goyal H S, Wesley S B, Harsha A P. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology,2012,226(226),163.
30 Xue J J, Sun K, Fang L, et al. Tribology,2016,36(5),614(in Chinese).
薛进进,孙琨,方亮,等.摩擦学学报,2016,36(5),615.
31 Beynon J H, Tyfour W R, Kapoor A. Wear,1995,180(1-2),79.
32 Cannon D F, Kalker J J, Orringer O. Rail quality and maintenance for modern railway operation, Kluwer Academic Publishers, The Netherlands,1993.
33 Rajnesh Tyagi, Nath S K, Ray S. Metallurgical and Materials Transactions A,2001,32(2),359.
34 Chu K J, Ren F Z, Zhu W W, et al. Wear,2017,392.
35 Ren F, Bellon P, Averback R S. Tribology International,2016,100,420.
36 Guo W, Zhang L P, Xu C, et al. Materials Research Express,2018,6(2),026572.
37 Ju J, Zhou Y, Kang M, et al. Materials (Basel),2018,11(10).
38 Gaurav K Bansal, Rajinikanth V, Chiradeep Ghosh, et al. Metallurgical and Materials Transactions A,2018,49(8),3501.
39 Trevisiol C, Jourani A, Bouvier S. Tribology International,2018,127,389.
40 Rainforth W M. Wear,2000,245,162.
41 Stevens R, Rainforth W M, Nutting J. Philosophical Magazine A,1992,66(4),621.
42 Dautzenberg J H, Zaat J H. Wear,1973,23,9.
43 Shi Z, Bloyce A, Bell T. Wear,1996,198,300.
44 Sundarajan G, Venkataraman B. Acta Materialia,1996,44,461.
45 Farokhzadeh K, Edrisy A. Tribology International,2016,94,98.
46 Gui Y L, Qi X J, Song C Y. Materials Science Forum,2011,704-705,1068.
47 Wisander D, Bill R C. Wear,1977,41(2),351.
48 Straffelini G, Molinari A, Tesi B, et al. Wear,1997,208(1-2),105.
49 Gabi Nehme, Ramoun Mourhatch, Pranesh B Aswath. Wear,2010,268(9-10),1129.
50 Ma W L, Lu J J. Tribology Letters,2010,41(2),363.
51 Rice S L. Wear,1981,74,131.
52 Rice S L, Nowotny H, Wayne S F. ASLE Transactions,2008,24(2),264.
53 Menezes P L, Kishore, Kailas S V. Wear,2006,261(5-6),578.
54 Menezes P L, Kishore, Kailas S V. Wear,2009,267(1-4),476.
55 Divakar R, Rigney D A, Kuo S M. Scripta Metallurgica Et Materialia,1992,27(8),975.
56 Rigney D A. Material Research Innovations,1998,1(4),231.
57 Meng-Burany X, Perry T A, Sachdev A K, et al. Wear,2011,270(3-4),152.
58 Sun H Q, Shi Y N, Zhang M X. Wear,2009,266(7-8),666.
59 Wei X C, Hua M, Xue Z Y, et al. Wear,2009,267(9-10),1386.
60 Wang X, Wei X C, Hong X L, et al. Applied Surface Science,2013,280,381.
61 Padilla H A, Boyce B L, Battaile C C, et al. Wear,2013,297(1-2),860.
62 Han Z, Chen X, Li X Y,et al. Science Advances,2016,2,e1601942.
63 Stott F H, Wood G C. Tribology International,1978,11(4),211.
64 So H, Yu D S, Chuang C Y. Wear,2002,253(9),1004.
65 Quinn T F J, Sullivan J L, Rowson D M. Wear,1984,94(2),175.
66 Koji Kato. Wear,2000241(2),151.
67 Shabashov V A, Korshunov L G, Chernenko N L,et al. Metal Science & Heat Treatment,2008,50(11-12),583.
68 Rainforth W M, Stevens R, Nutting J. Philosophical Magazine A,1992,66(4),621.
69 Kolubaev a V, Tarassov S Y. Wear,1999,231(2),228.
70 Shakhvorostov D, Pöhlmann K, Scherge M. Wear,2006,260(4-5),433.
71 Linsler D, Schlarb T, Weingärtner T, et al.Wear,2015,332-333,926.
72 Chen X, Han Z, Li X Y, et al.Science Advances,2016,2,e1601942.
73 Ken'ichi Hiratsuka, Ken'ichi Muramoto. Wear,2005,259(1-6),467.
74 Jiang J R, Stott F H, Stack M M. Tribology International,1998,31(5),245.
75 Walker J C, Saranu S R, Kean A H, et al.Wear,2011,271(9-10),2067.
76 Zhou G H, Zhu Y F, Wang X M, et al.Wear,2013,301(1-2),753.
77 Kato H, Komai K. Wear,2007,262(1-2),36.
78 Singh J B, Wen J G, Bellon P. Acta Materialia,2008,56(13),3053.
79 Singh J B, Cai W, Bellon P. Wear,2007,263(1-6),830.
[1] 滕树满, 滕海灏. 等通道挤压制备铝基细晶材料的研究进展[J]. 材料导报, 2020, 34(Z1): 345-350.
[2] 袁晓静, 关宁, 侯根良, 陈小虎, 马爽. 高温固体自润滑涂层的制备及可靠性的研究进展[J]. 材料导报, 2020, 34(5): 5061-5067.
[3] 陶博浩, 李菊, 张彦华. TA19双态组织钛合金线性摩擦焊接头的组织结构及演化行为[J]. 材料导报, 2020, 34(14): 14147-14153.
[4] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[5] 时博, 王金辉, 魏福安. 金属玻璃自由体积理论的研究概述[J]. 材料导报, 2019, 33(7): 1221-1226.
[6] 王煜烨, 汤爱涛, 潘荣剑, 潘复生. 分子动力学在镁及镁合金微观塑性变形中的应用进展[J]. 材料导报, 2019, 33(19): 3290-3297.
[7] 王晋枝,姜淑文,朱小鹏. 添加WS2/MoS2固体润滑剂的自润滑复合涂层研究进展[J]. 材料导报, 2019, 33(17): 2868-2872.
[8] 李俊超, 朱丽娜, 马国政, 王海斗. 自润滑关节轴承质量检测及寿命评估研究现状[J]. 材料导报, 2018, 32(21): 3796-3804.
[9] 李志峰,何永全,曹光明,汤军舰,刘振宇. 热轧钢材氧化铁皮的高温形变机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 259-262.
[10] 郭炜, 王德, 付远, 陆德平, 刘克明, 王渠东, 张利. 反复锻压剧烈塑性变形的有限元分析*[J]. CLDB, 2017, 31(8): 145-148.
[11] 张天刚, 孙荣禄. TC4表面单道与多道搭接激光熔覆自润滑涂层微观组织对比研究*[J]. 《材料导报》期刊社, 2017, 31(4): 47-51.
[12] 陈亚军, 郁佳琪, 赵婕宇, 王付胜. 磁控溅射高温固体自润滑涂层的研究与进展*[J]. 《材料导报》期刊社, 2017, 31(3): 32-37.
[13] 王俊颜, 边晨, 肖汝诚, 马骉, 刘国平. 常温养护型超高性能混凝土的圆环约束收缩性能*[J]. CLDB, 2017, 31(23): 52-57.
[14] 雷若姗, 陈广润, 徐时清, 王焕平, 汪明朴. 大塑性变形工艺制备纳米晶过饱和固溶体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 130-134.
[15] 张硕, 徐梓真, 张冰, 宋国林, 韩彬, 唐国翌. 高能电脉冲-超声滚压耦合技术对淬火态GCr15钢表面强化研究*[J]. 《材料导报》期刊社, 2017, 31(2): 82-86.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed