Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 82-86    https://doi.org/10.11896/j.issn.1005-023X.2017.02.018
  材料研究 |
高能电脉冲-超声滚压耦合技术对淬火态GCr15钢表面强化研究*
张硕1, 徐梓真1, 张冰1, 宋国林1, 韩彬2, 唐国翌1
1 清华大学深圳研究生院新材料研究所, 深圳 518055;
2 黑龙江北方工具有限公司, 牡丹江 157013;
Surface Properties of Quenched GCr15 Steel Enhanced by Electropulsing Ultrasonic Surface Rolling Process
ZHANG Shuo1, XU Zizhen1, ZHANG Bing1, SONG Guolin1, HAN Bin2, TANG Guoyi1
1 Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055;
2 Heilongjiang North Tools Co.,Ltd., Mudanjiang 157013;
下载:  全 文 ( PDF ) ( 2136KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用高能电脉冲辅助超声滚压技术对高频淬火态GCr15轴承钢进行了表面强化处理,并对表层硬度梯度、表面粗糙度以及摩擦磨损性能进行了表征。与普通超声滚压技术相比,声电耦合处理后样品在提高表面硬度的同时强化层深度提高约100 μm,表面粗糙度Ra由1.4 μm降低至0.23 μm,并且在电脉冲作用下位错运动与越过能垒的能力都得到增强,从而促进表面微裂纹得到愈合,表面质量显著提高,摩擦磨损性能提高约50%。对高频淬火态GCr15轴承钢而言,脉冲电流的电致塑性效应能够促进位错运动,提高材料表面塑性变形能力,从而使超声滚压产生的塑性变形向次表层发展,显著提高强化效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张硕
徐梓真
张冰
宋国林
韩彬
唐国翌
关键词:  声电耦合处理  塑性变形  硬度  表面质量  摩擦磨损性能    
Abstract: The current study aimed at enhancing the surface properties of high-frequency quenched GCr15 steel by electropul-sing ultrasonic surface rolling process(EUSR). Experiments were put forward to reveal the surface microhardness, strengthen layer, surface quality, friction and wear behaviors. Compared with traditional ultrasonic surface rolling technology, EUSR technology not only enhanced the surface hardness, but also promoted the depth of surface strengthened layer by 100 μm. Axial roughness was reduced from Ra of 1.40 μm to Ra of 0.23 μm, and the electron flow force could accelerate the movement of dislocations and enhance the ability of pasting energy barrier, which promoted the healing of miro-cracks and leaded to a better surface quality. EUSR treatment could improve the friction and wear performance, and the wear resistance of EUSR sample was increased by about 50%. For high-frequency quenched GCr15 steel, the electroplasticity effect would promote the movement of dislocations and enhance the material surface plastic deformation, which was facilitated in spreading the plastic strain of ultrasonic rolling into the materials interior, therefore the surface properties had a remarkable improvement.
Key words:  electropulsing ultrasonic surface rolling process    plastic deformation    microhardness    surface qulity    friction and wear behaviors
               出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TB31  
基金资助: *广东省省级科技计划项目(2014B090901029);深圳市基础研究项目(JCYJ20140417115840280);深圳市技术研究开发计划技术创新项目(CXZZ20140702113545562)
作者简介:  张硕:男,1990年生,硕士,主要研究方向为金属材料表面强化技术 E-mail:zhangshuonwpu@163.com 唐国翌:通讯作者,1954年生,教授,博士研究生导师,主要研究方向为金属材料表面改性 E-mail:tanggy@sz.tsinghua.edu.cn
引用本文:    
张硕, 徐梓真, 张冰, 宋国林, 韩彬, 唐国翌. 高能电脉冲-超声滚压耦合技术对淬火态GCr15钢表面强化研究*[J]. 《材料导报》期刊社, 2017, 31(2): 82-86.
ZHANG Shuo, XU Zizhen, ZHANG Bing, SONG Guolin, HAN Bin, TANG Guoyi. Surface Properties of Quenched GCr15 Steel Enhanced by Electropulsing Ultrasonic Surface Rolling Process. Materials Reports, 2017, 31(2): 82-86.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.018  或          http://www.mater-rep.com/CN/Y2017/V31/I2/82
1 Han H, Gao Y,Zhang Y,et al.Effect of magnetic field distribution of friction surface on friction and wear properties of 45 steel in DC magnetic field[J].Wear,2015,328:422.
2 Shi Zengmin,Zheng Yong,Feng Ping.Wear mechanism of cermet tools in cutting quenched medium carbon steel[J].Rare Metal Mater Eng,2007(S3):26(in Chinese).
石增敏,郑勇,丰平.金属陶瓷刀具切削淬火钢的磨损机理研究[J].稀有金属材料与工程,2007(S3):26.
3 Dai K,Shaw L. Comparison between shot peening and surface nanocrystallization and hardening processes[J]. Mater Sci Eng A,2007,463(1-2):46.
4 Aymen A A,Mansour M,Manfred W,et al. Effect of micro shot peening on the mechanical properties and corrosion behavior of two microstructure Ti-6Al-4V alloy [J].Appl Surf Sci,2016,363:50.
5 Suh C,Song G,Suh M,et al.Fatigue and mechanical characteristics of nano-structured tool steel by ultrasonic cold forging technology[J]. Mater Sci Eng A,2007,443(1-2):101.
6 Liu M,Li Y J,Ma Y,et al. Surface nanocrystallization and property of Ti6Al4V alloy induced by high pressure surface rolling [J].Surf Coat Technol,2016,289:94.
7 Remington B A,Allen P,Bringa E M,et al.Material dynamics under extreme conditions of pressure and strain rate[J].Mater Sci Tech-nol,2006,22(4):474.
8 Cao X J,Pyoun Y S,Murakami R.Fatigue properties of a S45C steel subjected to ultrasonic nanocrystal surface modification[J].Appl Surf Sci,2010,256(21):6297.
9 Huang L,Lu J,Troyon M.Nanomechanical properties of nanostructured titanium prepared by SMAT[J]. Surf Coat Technol,2006,201(1-2):208.
10 Zhang Y S,Han Z,Wang K,et al.Friction and wear behaviors of nanocrystalline surface layer of pure copper[J].Wear,2006,260(9-10):942.
11 Abreu H F G,Tavares S S M,Carvalho S S,et al. Texture and microstructure of cold rolled and recrystallized pure niobium[J].Mater Sci Forum,2007,539-543:3436.
12 Wang Lingsheng,Ye Xiaoxin,Liu Tao.Effect of electropulsing assisted ultrasonic impact treatment on residual stress and microhardness of weld [J].Mater Rev:Res,2015,29(9):71(in Chinese).
王铃声,叶肖鑫,刘涛,等.电脉冲辅助超声冲击技术对焊缝残余应力及显微硬度的影响[J].材料导报:研究篇,2015,29(9):71.
13 Roland T,Retraint D,Lu K,et al.Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment[J].Scripta Mater,2006,54(11):1949.
14 Tian J W,Villegas J C,Yuan W,et al.A study of the effect of nanostructured surface layers on the fatigue behaviors of a C-2000 supe-ralloy[J]. Mater Sci Eng A,2007,468-470:164.
15 Liu Wencai,Dong Jie,Zhang Ping,et al.Research status of fatigue properies of surface treated magnesium alloys[J]. Mater Rev:Res,2008,22(7):91(in Chinese).
刘文才,董杰,张平,等.表面处理镁合金疲劳性能的研究现状[J].材料导报:研究篇,2008,22(7):91.
16 Lee W B,Cho K T,Kim K H,et al.The effect of the cementite phase on the surface hardening of carbon steels by shot peening[J]. Mater Sci Eng A,2010,527(21-22):5852.
17 Troitskii O A,Likhtman V I.Anisotropy of the effect of electron-beam and irradiation on the deformation process of zinc single crystals in the brittle state[J]. Dokl. Akad. Nauk SSSR,1963,148:332.
18 Xu Z, Tang G, et al.Research of electroplastic rolling of AZ31 Mg alloy strip[J].J Mater Process Technol,2007,182(1-3):128.
19 Wang H,Song G,Tang G,et al. Evolution of surface mechanical properties and microstructure of Ti6Al4V alloy induced by electropulsing-assisted ultrasonic surface rolling process [J]. J Alloys Compd,2016,681:146.
20 Samuel E I,Bhowmik A,Qin R.Accelerated spheroidization induced by high intensity electric pulse in a severely deformed eutectoid steel[J].J Mater Res,2010,25(6):1020.
21 Qin R S,Samuel E I,Bhowmik A.Electropulse-induced cementite nanoparticle formation in deformed pearlitic steels[J].J Mater Sci,2011,46(9):2838.
22 Qin R S,Rahnama A,Lu W J,et al.Electropulsed steels[J].Mater Sci Technol,2014,30(9):1040.
23 Jiang Y,Tang G,Shek C,et al.On the thermodynamics and kinetics of electropulsing induced dissolution of β-Mg17Al12 phase in an aged Mg-9Al-1Zn alloy[J].Acta Mater,2009,57(16):4797.
24 Zhu R F,Tang G Y,Shi S Q,et al.Effect of electroplastic rolling on the ductility and superelasticity of TiNi shape memory alloy[J].Mater Des,2013,44:606.
25 Wang H,Song G,Tang G.Enhanced surface properties of austenitic stainless steel by electropulsing-assisted ultrasonic surface rolling process[J].Surf Coat Technol,2015,282:149.
26 Ye X,Yang Y,Tang G. Microhardness and corrosion behavior of surface gradient oxide coating on the titanium alloy strips under high energy electro-pulsing treatment[J].Surf Coat Technol,2014,258:467.
27 Pagnoux G,Fouvry S,Peigney M,et al.Influence of scratches on the wear behavior of DLC coatings[J].Wear,2015,330-331:380.
28 Nie X Y,Zhang P,Weiner A M,et al.Nanoscale wear and machining behavior of nanolayer interfaces[J].Nano Lett,2005,5(10):1992.
29 Huang J,Lee J,Li C.Nano-scratching and nano-machining in diffe-rent environments on Cr2N/Cu multilayer thin films[J].Thin Solid Films,2011,519(15):4992.
30 Fu W,Chen C A,Huang K,et al.Nano-scratch evaluations of copper chemical mechanical polishing[J].Thin Solid Films,2013,529:306.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 郭宝超, 蒋恩, 陈亮. 压水堆驱动机构钩爪激光与GTAW钴基合金堆焊层组织分析及性能表征[J]. 材料导报, 2019, 33(z1): 416-419.
[3] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[4] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[5] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[6] 时博, 王金辉, 魏福安. 金属玻璃自由体积理论的研究概述[J]. 材料导报, 2019, 33(7): 1221-1226.
[7] 陈枭, 白小波, 王洪涛, 纪岗昌. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
[8] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[9] 王虎, 王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 589-592.
[10] 杨理京,李争显,黄春良,王培,姚建华. 激光辅助冷喷涂制备高硬度材料涂层的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 412-417.
[11] 李志峰,何永全,曹光明,汤军舰,刘振宇. 热轧钢材氧化铁皮的高温形变机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 259-262.
[12] 黄本生, 高钰枭, 陈鹏, 李杰, 李光文. 高频感应熔覆TiN/Co涂层组织及性能研究[J]. 《材料导报》期刊社, 2018, 32(13): 2272-2277.
[13] 张天刚, 孙荣禄, 张雪洋, 刘亚楠. Ti811表面激光熔覆原位合成TiC-TiB2复合Ti基涂层的微观组织分析[J]. 《材料导报》期刊社, 2018, 32(13): 2208-2213.
[14] 施 麒, Yau Yau Tse, Rebecca Higginson, 陈 峰, 陶麒鹦. 退火热处理对等径角挤压回收Ti-6Al-4V合金微观结构和显微硬度的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1577-1581.
[15] 郭炜, 王德, 付远, 陆德平, 刘克明, 王渠东, 张利. 反复锻压剧烈塑性变形的有限元分析*[J]. CLDB, 2017, 31(8): 145-148.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed