Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (21): 130-134    https://doi.org/10.11896/j.issn.1005-023X.2017.021.018
  新材料新技术 |
大塑性变形工艺制备纳米晶过饱和固溶体的研究进展*
雷若姗1, 陈广润1, 徐时清1, 王焕平1, 汪明朴2
1 中国计量大学材料科学与工程学院,杭州 310018;
2 中南大学材料科学与工程学院,长沙 410083
Preparation of Nanocrystalline Supersaturated Solid Solution by Severe Plastic Deformation:a Review
LEI Ruoshan1, CHEN Guangrun1, XU Shiqing1, WANG Huanping1, WANG Mingpu2
1 College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018;
2 School of Materials Science and Engineering, Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 1775KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 合金在大塑性变形过程中能够形成纳米晶过饱和固溶体,呈现出不同于传统粗晶材料的微观结构和独特性能。近年来,纳米晶过饱和固溶体的形成机制及其热稳定性已成为国内外的一个研究热点。综述了大塑性变形工艺(如机械合金化法、高压扭转法等)制备纳米晶过饱和固溶体的研究概况,着重讨论分析了大塑性变形诱导纳米晶形成和固溶度扩展的几种机制及其局限性,简要介绍了纳米晶过饱和固溶体的热稳定性及其影响因素,最后对该领域今后的研究方向做出了分析和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
雷若姗
陈广润
徐时清
王焕平
汪明朴
关键词:  纳米晶  过饱和固溶体  大塑性变形  热稳定性    
Abstract: Nanocrystalline supersaturated solid solution can be produced by severe plastic deformation (SPD) techniques, which exhibits the unusual microstructure and properties compared with the coarse grain materials. In recent years, the formation mechanism and thermal stability of nanocrystalline solid solutions have been extensively studied. In this paper, the progress on the preparations of the nanocrystalline supersaturated solid solutions by SPD techniques (such as mechanical alloying, high pressure torsion, etc.) is reviewed. The formation mechanisms of nanocrystalline grains and the theories of the solid solution extension are mainly discussed. The thermal stability of the nanocrystalline supersaturated solid solution is also introduced. Moreover, the method to improve the current understanding is suggested briefly.
Key words:  nanocrystalline grain    supersaturated solid solution    severe plastic deformation    thermal stability
出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TB383  
基金资助: 国家自然科学基金(51401197)
作者简介:  雷若姗:女,1982年生,博士,副教授,主要研究方向为铜合金和亚稳态材料 E-mail:leiruoshan@cjlu.edu.cn
引用本文:    
雷若姗, 陈广润, 徐时清, 王焕平, 汪明朴. 大塑性变形工艺制备纳米晶过饱和固溶体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 130-134.
LEI Ruoshan, CHEN Guangrun, XU Shiqing, WANG Huanping, WANG Mingpu. Preparation of Nanocrystalline Supersaturated Solid Solution by Severe Plastic Deformation:a Review. Materials Reports, 2017, 31(21): 130-134.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.018  或          https://www.mater-rep.com/CN/Y2017/V31/I21/130
1 Rogachev A S, Kuskov K V, Shkodich N F, et al. Influence of high-energy ball milling on electrical resistance of Cu and Cu/Cr nanocomposite materials produced by spark plasma sintering[J]. J Alloys Compd, 2016, 688:468.
2 Dina V D, Lomovsky O I, Valeev K R. Phase evolution during early stages of mechanical alloying of Cu-13wt.% Al powder mixtures in a high-energy ball mill[J]. J Alloys Compd, 2015,629:343.
3 Aguilar C, Guzmán D, Castro F, et al. Fabrication of nanocrystalline alloys Cu-Cr-Mo supersaturate solid solution by mechanical alloying[J]. Mater Chem Phys, 2014,146:493.
4 Shen J, Chen X, Hammond V. The effect of rolling on the microstructure and compression behavior of AA5083 subjected to large-scale ECAE[J]. J Alloys Compd, 2017,695:3589.
5 Dalla T F, Lapovok R, Sandlin J, et al. Microstructure and properties of copper processed by equal channel angular extrusion for one to sixteen passes[J]. Acta Mater, 2004, 52:4819.
6 Askarpour M, Sadeghian Z, Reihanian M. Role of powder preparation route on microstructure and mechanical properties of Al-TiB2 composites fabricated by accumulative roll bonding (ARB)[J]. Mater Sci Eng A, 2016,677:400.
7 Naseri M, Reihanian M, Borhani E. Effect of strain path on microstructure, deformation texture and mechanical properties of nano/ultrafine grained AA1050 processed by accumulative roll bonding (ARB)[J]. Mater Sci Eng A, 2016, 673:288.
8 Silva L M, Tomita J T, Bringhenti C. Numerical investigation of a HPT with different rotor tip configurations in terms of pressure ratio and efficiency[J]. Aerospace Sci Technol, 2017, 63:33.
9 Rashkova B, Faller M, Pippan R. Growth mechanism of Al2Cu precipitates during in situ TEM heating of a HPT deformed Al-3wt.%Cu alloy[J]. J Alloys Compd, 2014,600:43.
10Darling K A, Roberts A J, Armstrong L, et al. Influence of Mn solute content on grain size reduction and improved strength in mechanically alloyed Al-Mn alloys[J]. Mater Sci Eng A, 2014, 589:57.
11Kuhnt M, Marsilius M, Strache T, et al. Magnetostriction of nanocrystalline (Fe,Co)-Si-B-P-Cu alloys[J]. Scripta Mater, 2017, 130:46.
12Parsons R, Garitaonandia J S, Yanai T, et al. Effect of Si on the field-induced anisotropy in Fe-rich nanocrystalline soft magnetic alloys[J]. J Alloys Compd, 2017,695:3156.
13Tao J M, Zhu X K, Scattergood R O, et al. The thermal stability of high-energy ball-milled nanostructured Cu[J]. Mater Des, 2013,50:22.
14Eckert J, Holzer J C, Johnson W L. Thermal stability and grain growth behavior of mechanically alloyed nanocrystalline Fe-Cu alloys[J]. J Appl Phys, 1993, 73:131.
15Mojtahedi M, Goodarzi M, Aboutalebi M R, et al. Investigation on the formation of Cu-Fe nano crystalline super-saturated solid solution developed by mechanical alloying[J]. J Alloys Compd, 2013, 550:380.
16Fang Q, Kang Z X. An investigation on morphology and structure of Cu-Cr alloy powders prepared by mechanical milling and alloying[J]. Powder Technol, 2015,270:104.
17Suryanarayana C. Mechanical alloying and milling[J]. Prog Mater Sci, 2001, 46:1.
18He Hang, Ni Hongwei, Huang Qunxin. Nano-crystalline ultrafine grain materials produced by mechanical alloying[J]. Special Steel, 2005, 26(2):32(in Chinese).
何航,倪红卫,黄群新.机械合金化制备纳米级超细晶材料[J].特殊钢,2005, 26(2):32.
19Liao X Z, Zhao Y H, Srinivasan S G, et al. Deformation twinning in nanocrystalline copper at room temperature and low strain rate[J]. Appl Phys Lett, 2004, 84(4):592.
20Yuntian T Z, Terence G L. Influence of grain size on deformation mechanisms: An extension to nanocrystalline materials[J]. Mater Sci Eng A, 2005, 409:234.
21Yamakov V, Wolf D, Philpot S R, et al. Deformation twinning in nanocrystalline Al by molecular-dynamics simulation[J]. Acta Mater, 2002, 50 (20):5005.
22Szczerba M J, Kopacz S, Szczerba M S. Experimental studies on detwinning of face-centered cubic deformation twins[J]. Acta Mater, 2016, 104:52.
23Murayama M, Howe J M, Hidaka H, et al. Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe[J]. Science, 2002, 295:2433.
24Lei R S, Wang M P, Li Z, et al. Disclination dipoles observation and nanocrystallization mechanism in ball milled Cu-Nb powders[J]. Mater Lett, 2011,65:3044.
25Wang Erde, Liu Jinglei, Liu Zuyan. The research progression on the kinetics of extension solid solubility induced by mechanical alloying[J]. Powder Metall Techonol, 2002, 20(2):109(in Chinese).
王尔德,刘京雷,刘祖岩.机械合金化诱导固溶度扩展机制研究进展[J]. 粉末冶金技术,2012, 20(2):109.
26Mula S, Bahmanpour H, Mal S, et al. Thermodynamic feasibility of solid solubility extension of Nb in Cu and their thermal stability[J]. Mater Sci Eng A, 2012, 539:330.
27Lei R S, Wang M P, Li Z, et al. Structure evolution and solid solubility extension of copper-niobium powders during mechanical alloying[J]. Mater Sci Eng A, 2011, 528:4475.
28Blavette D, Cldel E, Fraczkiewez A, et al. Three-dimensional ato-mic-scale imaging of impurity segregation to line defects[J]. Science, 1999, 286:2317.
29Veltl G. Amorphization of Cu-Ta alloys by mechanical alloying[J]. Mater Sci Eng A, 1991, 134:1410.
30Estin Y, Rabkin E. Pipe diffusion along curved dislocations: An application to mechanical alloying[J]. Scripta Mater, 1998, 39(12):1731.
31Schwarz R B. Microscopic model for mechanical alloying[J]. Mater Sci Forum, 1997, 269-272(2): 665.
32Raabe D, Ohsaki S, Hono K. Mechanical alloying and amorphization in Cu-Nb-Ag in situ composite wires studied by transmission electron microscopy and atom probe tomography[J]. Acta Mater, 2009, 57:5254.
33Guo W, Jgle E A, Choi P P, et al. Shear-induced mixing governs codeformation of crystalline-amorphous nanolaminates[J]. Phys Rev Lett, 2014, 113:035501.
34Drbohlav O, Yavari A R. Mechanical alloying and thermal decomposition of ferromagnetic nanocrystalline f.c.c.-Cu50Fe50[J]. Acta Mater, 1995,43:1799.
35Huang J Y, Yu Y D, Wu Y K, et al. Microstructure and nanoscale composition analysis of the mechanical alloying of FexCu100-x(x=16, 60)[J]. Acta Mater, 1997, 45:113.
36Raghu T, Sundaresan R, Ramakrishnan P, et al. Synthesis of nanocrystalline copper-tungsten alloys by mechanical alloying[J]. Mater Sci Eng A, 2001, 304-306:438.
37Yavari A R, Desre P J, Benameur T. Mechanically driven alloying of immiscible elements[J]. Phys Rev Lett, 1992, 68:2235.
38Bommnr R. Powder-metallurgical preparation and properties of superconducting Nb3Sn and V3Ga microcomposites[J]. J Appl Phys, 1983, 54:1479.
39Botcharova E, Freudenberger J, Schultz L. Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu-Nb alloys[J]. Acta Mater, 2006, 54:3333.
40Chookajorn T, Christopher A S. Nanoscale segregation behavior and high-temperature stability of nanocrystalline W-20 at.% Ti[J]. Acta Mater, 2014,73:128.
41Chookajorn T, Heather A M, Christopher A S. Design of stable nanocrystalline alloys[J]. Science, 2012,337:951.
42Muthaiah S V M, Mula S. Effect of zirconium on thermal stability of nanocrystalline aluminium alloy prepared by mechanical alloying[J]. J Alloys Compd, 2016, 688:571.
43Kapoor M, Kaub T, Darling K, et al. An atom probe study on Nb solute partitioning and nanocrystalline grain stabilization in mechanically alloyed Cu-Nb[J]. Acta Mater, 2017,126:564.
44Frolov T, Darling K A, Kecskes L J, et al. Stabilization and strengthening of nanocrystalline copper by alloying with tantalum[J]. Acta Mater, 2012,60:2158.
45Atwater M A, Roy D, Darling K A, et al. The thermal stability of nanocrystalline copper cryogenically milled with tungsten[J]. Mater Sci Eng A, 2012, 558:226.
46Zhu C J, Ma X F, Zhao W, et al. Synthesis and thermal stability of Al75W25alloy obtained by mechanically alloying[J]. J Alloys Compd, 2005, 393:248.
[1] 郭洪兵, 刘曰利. 基于Cs4PbBr6纳米晶的超高灵敏度电阻型湿敏传感器[J]. 材料导报, 2025, 39(3): 24040002-7.
[2] 王鹤龙, 史贵丙, 王丽, 李宗臻. 高饱和磁通密度铁基非晶纳米晶磁粉芯的研究进展[J]. 材料导报, 2025, 39(3): 24010092-9.
[3] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[4] 陈卓坤, 张晓芳, 刘语馨, 虢婷, 孙志平, 周青, 陈永楠. 纳米多晶金属的晶界设计及强韧化研究进展[J]. 材料导报, 2024, 38(20): 23070227-9.
[5] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[6] 孙元杰, 李志刚, 王艺, 田波, 李金凤, 张楠, 赵浚峰, 张建伟, 李拓, 赵弘韬. 金属卤化物钙钛矿纳米晶体/聚合物复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23040056-10.
[7] 张思钊, 刘淳, 姜勇刚, 冯坚. 聚酰亚胺气凝胶的耐高温性能研究进展[J]. 材料导报, 2024, 38(13): 23040260-11.
[8] 梁梦标, 陈婷, 秦喆, 谢志翔, 徐彦乔, 温鹏, 林坚, 郭春显. 全无机铯铅卤钙钛矿纳米晶的表面包覆策略及白光LED应用研究进展[J]. 材料导报, 2024, 38(11): 22120172-11.
[9] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[10] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[11] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[12] 武素丽, 荀文斐, 张淑芬. 稀土氟化物上转换纳米晶尺寸调控的研究进展[J]. 材料导报, 2023, 37(3): 22110116-8.
[13] 王宁, 马晓波, 侯毅, 郑富, 曹志杰. 金属诱导制备纳米晶硅薄膜的研究进展[J]. 材料导报, 2023, 37(21): 22050080-7.
[14] 徐雪珠, 蒙紫薇, 周国富. 纳米纤维素的光电子性能及器件应用综述[J]. 材料导报, 2023, 37(2): 21010134-14.
[15] 郑皓天, 王子龙, 李翔. 基于纳米晶结构的非晶合金成分设计[J]. 材料导报, 2022, 36(7): 20090031-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed