Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (21): 130-134    https://doi.org/10.11896/j.issn.1005-023X.2017.021.018
  新材料新技术 |
大塑性变形工艺制备纳米晶过饱和固溶体的研究进展*
雷若姗1, 陈广润1, 徐时清1, 王焕平1, 汪明朴2
1 中国计量大学材料科学与工程学院,杭州 310018;
2 中南大学材料科学与工程学院,长沙 410083
Preparation of Nanocrystalline Supersaturated Solid Solution by Severe Plastic Deformation:a Review
LEI Ruoshan1, CHEN Guangrun1, XU Shiqing1, WANG Huanping1, WANG Mingpu2
1 College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018;
2 School of Materials Science and Engineering, Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 1775KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 合金在大塑性变形过程中能够形成纳米晶过饱和固溶体,呈现出不同于传统粗晶材料的微观结构和独特性能。近年来,纳米晶过饱和固溶体的形成机制及其热稳定性已成为国内外的一个研究热点。综述了大塑性变形工艺(如机械合金化法、高压扭转法等)制备纳米晶过饱和固溶体的研究概况,着重讨论分析了大塑性变形诱导纳米晶形成和固溶度扩展的几种机制及其局限性,简要介绍了纳米晶过饱和固溶体的热稳定性及其影响因素,最后对该领域今后的研究方向做出了分析和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
雷若姗
陈广润
徐时清
王焕平
汪明朴
关键词:  纳米晶  过饱和固溶体  大塑性变形  热稳定性    
Abstract: Nanocrystalline supersaturated solid solution can be produced by severe plastic deformation (SPD) techniques, which exhibits the unusual microstructure and properties compared with the coarse grain materials. In recent years, the formation mechanism and thermal stability of nanocrystalline solid solutions have been extensively studied. In this paper, the progress on the preparations of the nanocrystalline supersaturated solid solutions by SPD techniques (such as mechanical alloying, high pressure torsion, etc.) is reviewed. The formation mechanisms of nanocrystalline grains and the theories of the solid solution extension are mainly discussed. The thermal stability of the nanocrystalline supersaturated solid solution is also introduced. Moreover, the method to improve the current understanding is suggested briefly.
Key words:  nanocrystalline grain    supersaturated solid solution    severe plastic deformation    thermal stability
               出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TB383  
基金资助: 国家自然科学基金(51401197)
作者简介:  雷若姗:女,1982年生,博士,副教授,主要研究方向为铜合金和亚稳态材料 E-mail:leiruoshan@cjlu.edu.cn
引用本文:    
雷若姗, 陈广润, 徐时清, 王焕平, 汪明朴. 大塑性变形工艺制备纳米晶过饱和固溶体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 130-134.
LEI Ruoshan, CHEN Guangrun, XU Shiqing, WANG Huanping, WANG Mingpu. Preparation of Nanocrystalline Supersaturated Solid Solution by Severe Plastic Deformation:a Review. Materials Reports, 2017, 31(21): 130-134.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.018  或          http://www.mater-rep.com/CN/Y2017/V31/I21/130
1 Rogachev A S, Kuskov K V, Shkodich N F, et al. Influence of high-energy ball milling on electrical resistance of Cu and Cu/Cr nanocomposite materials produced by spark plasma sintering[J]. J Alloys Compd, 2016, 688:468.
2 Dina V D, Lomovsky O I, Valeev K R. Phase evolution during early stages of mechanical alloying of Cu-13wt.% Al powder mixtures in a high-energy ball mill[J]. J Alloys Compd, 2015,629:343.
3 Aguilar C, Guzmán D, Castro F, et al. Fabrication of nanocrystalline alloys Cu-Cr-Mo supersaturate solid solution by mechanical alloying[J]. Mater Chem Phys, 2014,146:493.
4 Shen J, Chen X, Hammond V. The effect of rolling on the microstructure and compression behavior of AA5083 subjected to large-scale ECAE[J]. J Alloys Compd, 2017,695:3589.
5 Dalla T F, Lapovok R, Sandlin J, et al. Microstructure and properties of copper processed by equal channel angular extrusion for one to sixteen passes[J]. Acta Mater, 2004, 52:4819.
6 Askarpour M, Sadeghian Z, Reihanian M. Role of powder preparation route on microstructure and mechanical properties of Al-TiB2 composites fabricated by accumulative roll bonding (ARB)[J]. Mater Sci Eng A, 2016,677:400.
7 Naseri M, Reihanian M, Borhani E. Effect of strain path on microstructure, deformation texture and mechanical properties of nano/ultrafine grained AA1050 processed by accumulative roll bonding (ARB)[J]. Mater Sci Eng A, 2016, 673:288.
8 Silva L M, Tomita J T, Bringhenti C. Numerical investigation of a HPT with different rotor tip configurations in terms of pressure ratio and efficiency[J]. Aerospace Sci Technol, 2017, 63:33.
9 Rashkova B, Faller M, Pippan R. Growth mechanism of Al2Cu precipitates during in situ TEM heating of a HPT deformed Al-3wt.%Cu alloy[J]. J Alloys Compd, 2014,600:43.
10Darling K A, Roberts A J, Armstrong L, et al. Influence of Mn solute content on grain size reduction and improved strength in mechanically alloyed Al-Mn alloys[J]. Mater Sci Eng A, 2014, 589:57.
11Kuhnt M, Marsilius M, Strache T, et al. Magnetostriction of nanocrystalline (Fe,Co)-Si-B-P-Cu alloys[J]. Scripta Mater, 2017, 130:46.
12Parsons R, Garitaonandia J S, Yanai T, et al. Effect of Si on the field-induced anisotropy in Fe-rich nanocrystalline soft magnetic alloys[J]. J Alloys Compd, 2017,695:3156.
13Tao J M, Zhu X K, Scattergood R O, et al. The thermal stability of high-energy ball-milled nanostructured Cu[J]. Mater Des, 2013,50:22.
14Eckert J, Holzer J C, Johnson W L. Thermal stability and grain growth behavior of mechanically alloyed nanocrystalline Fe-Cu alloys[J]. J Appl Phys, 1993, 73:131.
15Mojtahedi M, Goodarzi M, Aboutalebi M R, et al. Investigation on the formation of Cu-Fe nano crystalline super-saturated solid solution developed by mechanical alloying[J]. J Alloys Compd, 2013, 550:380.
16Fang Q, Kang Z X. An investigation on morphology and structure of Cu-Cr alloy powders prepared by mechanical milling and alloying[J]. Powder Technol, 2015,270:104.
17Suryanarayana C. Mechanical alloying and milling[J]. Prog Mater Sci, 2001, 46:1.
18He Hang, Ni Hongwei, Huang Qunxin. Nano-crystalline ultrafine grain materials produced by mechanical alloying[J]. Special Steel, 2005, 26(2):32(in Chinese).
何航,倪红卫,黄群新.机械合金化制备纳米级超细晶材料[J].特殊钢,2005, 26(2):32.
19Liao X Z, Zhao Y H, Srinivasan S G, et al. Deformation twinning in nanocrystalline copper at room temperature and low strain rate[J]. Appl Phys Lett, 2004, 84(4):592.
20Yuntian T Z, Terence G L. Influence of grain size on deformation mechanisms: An extension to nanocrystalline materials[J]. Mater Sci Eng A, 2005, 409:234.
21Yamakov V, Wolf D, Philpot S R, et al. Deformation twinning in nanocrystalline Al by molecular-dynamics simulation[J]. Acta Mater, 2002, 50 (20):5005.
22Szczerba M J, Kopacz S, Szczerba M S. Experimental studies on detwinning of face-centered cubic deformation twins[J]. Acta Mater, 2016, 104:52.
23Murayama M, Howe J M, Hidaka H, et al. Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe[J]. Science, 2002, 295:2433.
24Lei R S, Wang M P, Li Z, et al. Disclination dipoles observation and nanocrystallization mechanism in ball milled Cu-Nb powders[J]. Mater Lett, 2011,65:3044.
25Wang Erde, Liu Jinglei, Liu Zuyan. The research progression on the kinetics of extension solid solubility induced by mechanical alloying[J]. Powder Metall Techonol, 2002, 20(2):109(in Chinese).
王尔德,刘京雷,刘祖岩.机械合金化诱导固溶度扩展机制研究进展[J]. 粉末冶金技术,2012, 20(2):109.
26Mula S, Bahmanpour H, Mal S, et al. Thermodynamic feasibility of solid solubility extension of Nb in Cu and their thermal stability[J]. Mater Sci Eng A, 2012, 539:330.
27Lei R S, Wang M P, Li Z, et al. Structure evolution and solid solubility extension of copper-niobium powders during mechanical alloying[J]. Mater Sci Eng A, 2011, 528:4475.
28Blavette D, Cldel E, Fraczkiewez A, et al. Three-dimensional ato-mic-scale imaging of impurity segregation to line defects[J]. Science, 1999, 286:2317.
29Veltl G. Amorphization of Cu-Ta alloys by mechanical alloying[J]. Mater Sci Eng A, 1991, 134:1410.
30Estin Y, Rabkin E. Pipe diffusion along curved dislocations: An application to mechanical alloying[J]. Scripta Mater, 1998, 39(12):1731.
31Schwarz R B. Microscopic model for mechanical alloying[J]. Mater Sci Forum, 1997, 269-272(2): 665.
32Raabe D, Ohsaki S, Hono K. Mechanical alloying and amorphization in Cu-Nb-Ag in situ composite wires studied by transmission electron microscopy and atom probe tomography[J]. Acta Mater, 2009, 57:5254.
33Guo W, Jgle E A, Choi P P, et al. Shear-induced mixing governs codeformation of crystalline-amorphous nanolaminates[J]. Phys Rev Lett, 2014, 113:035501.
34Drbohlav O, Yavari A R. Mechanical alloying and thermal decomposition of ferromagnetic nanocrystalline f.c.c.-Cu50Fe50[J]. Acta Mater, 1995,43:1799.
35Huang J Y, Yu Y D, Wu Y K, et al. Microstructure and nanoscale composition analysis of the mechanical alloying of FexCu100-x(x=16, 60)[J]. Acta Mater, 1997, 45:113.
36Raghu T, Sundaresan R, Ramakrishnan P, et al. Synthesis of nanocrystalline copper-tungsten alloys by mechanical alloying[J]. Mater Sci Eng A, 2001, 304-306:438.
37Yavari A R, Desre P J, Benameur T. Mechanically driven alloying of immiscible elements[J]. Phys Rev Lett, 1992, 68:2235.
38Bommnr R. Powder-metallurgical preparation and properties of superconducting Nb3Sn and V3Ga microcomposites[J]. J Appl Phys, 1983, 54:1479.
39Botcharova E, Freudenberger J, Schultz L. Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu-Nb alloys[J]. Acta Mater, 2006, 54:3333.
40Chookajorn T, Christopher A S. Nanoscale segregation behavior and high-temperature stability of nanocrystalline W-20 at.% Ti[J]. Acta Mater, 2014,73:128.
41Chookajorn T, Heather A M, Christopher A S. Design of stable nanocrystalline alloys[J]. Science, 2012,337:951.
42Muthaiah S V M, Mula S. Effect of zirconium on thermal stability of nanocrystalline aluminium alloy prepared by mechanical alloying[J]. J Alloys Compd, 2016, 688:571.
43Kapoor M, Kaub T, Darling K, et al. An atom probe study on Nb solute partitioning and nanocrystalline grain stabilization in mechanically alloyed Cu-Nb[J]. Acta Mater, 2017,126:564.
44Frolov T, Darling K A, Kecskes L J, et al. Stabilization and strengthening of nanocrystalline copper by alloying with tantalum[J]. Acta Mater, 2012,60:2158.
45Atwater M A, Roy D, Darling K A, et al. The thermal stability of nanocrystalline copper cryogenically milled with tungsten[J]. Mater Sci Eng A, 2012, 558:226.
46Zhu C J, Ma X F, Zhao W, et al. Synthesis and thermal stability of Al75W25alloy obtained by mechanically alloying[J]. J Alloys Compd, 2005, 393:248.
[1] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[2] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[3] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[4] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[5] 毛虎,杨宏亮,史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
[6] 刘泓吟, 杨宏宇, 陈明凤. 异氰酸酯指数对聚氨酯硬泡阻燃、热稳定性及燃烧性能的影响[J]. 材料导报, 2019, 33(12): 2071-2075.
[7] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[8] 施渊吉, 吴晓春, 闵娜. Fe-Cr-Mo-W-V系热作模具钢高温热稳定性机理研究[J]. 材料导报, 2018, 32(6): 930-936.
[9] 费志方, 李昆锋, 杨自春, 高文杰, 陈国兵. APTES交联型聚酰亚胺气凝胶的制备与表征[J]. 材料导报, 2018, 32(20): 3623-3627.
[10] 胡德超,贾志欣,钟邦超,董焕焕,丁勇,罗远芳,贾德民. 废印刷电路板非金属粉负载二氧化硅杂化填料的制备及其在不饱和聚酯中的应用[J]. 《材料导报》期刊社, 2018, 32(2): 278-281.
[11] 畅庚榕, 刘明霞, 马飞, 徐可为. 微应变诱导各向异性硅纳米晶形成及其光学特性[J]. 材料导报, 2018, 32(18): 3104-3109.
[12] 崔田路, 顾雪, 贾中秋, 尹晓桐, 曹中秋, 张轲. 不同工艺制备的纳米晶Ag-25Ni合金在NaCl溶液中的腐蚀性能[J]. 材料导报, 2018, 32(16): 2798-2802.
[13] 邓莉萍, 鲁世强, 林彦. 合金元素Ni对NbCr2/Nb合金热稳定性的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2442-2447.
[14] 潘书万,庄琼云,陈松岩,黄巍,李成,郑力新. 硅(100)衬底表面快速热退火制备硒纳米晶薄膜的结晶动力学[J]. 《材料导报》期刊社, 2018, 32(11): 1928-1931.
[15] 刘莹莹, 陈子勇, 金头男, 柴丽华. 600 ℃高温钛合金发展现状与展望[J]. 《材料导报》期刊社, 2018, 32(11): 1863-1869.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed