Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23070227-9    https://doi.org/10.11896/cldb.23070227
  金属与金属基复合材料 |
纳米多晶金属的晶界设计及强韧化研究进展
陈卓坤1, 张晓芳2, 刘语馨1, 虢婷1,*, 孙志平1, 周青3, 陈永楠1
1 长安大学材料科学与工程学院,西安 710064
2 松山湖材料实验室,广东 东莞 523808
3 西北工业大学凝固技术国家重点实验室,西安 710072
Research Progress in Grain Boundary Design and Strengthening and Toughening of Nanocrystalline Polycrystalline Metals
CHEN Zhuokun1, ZHANG Xiaofang2, LIU Yuxin1, GUO Ting1,*, SUN Zhiping1, ZHOU Qing3, CHEN Yongnan1
1 School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China
2 Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
3 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China
下载:  全 文 ( PDF ) ( 4312KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米多晶金属材料因具有高体积分数晶界而表现出许多独特的力学性能,如高强度、高硬度、良好的抗磨性和优异的抗疲劳性能等。然而,大量晶界导致的晶间软化和晶界脆性等问题,严重制约其在结构工程领域的实际应用。因此,如何对纳米多晶金属中丰富而又普遍的晶界进行精细设计,并建立相关力学性能变异的新理论和新方法,成为目前材料科学与纳米力学领域研究的热点和难点。本文主要以面心立方结构金属为例,综合阐述了近年来通过晶界工程提升纳米多晶材料力学性能的研究进展,重点介绍了目前几种主要的晶界调控方法及其对强度和塑性的影响,并对其内在强韧化机制进行对比分析,最后归纳分析了晶界设计在纳米材料力学行为研究方面仍存在的问题和挑战,展望了其今后的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈卓坤
张晓芳
刘语馨
虢婷
孙志平
周青
陈永楠
关键词:  纳米晶  晶界设计  力学性能  强韧化    
Abstract: Nanocrystalline polycrystalline metals exhibit many unique mechanical properties due to the high fraction volume of grain boundaries, such as high strength and hardness, good wear resistance, and excellent fatigue resistance. However, the problems of intergranular softening and grain boundary brittleness brought by the abundant grain boundaries seriously restrict their practical application in the field of structural engineering. Therefore, how to precisely design the rich and common grain boundaries in nanocrystalline polycrystalline metals, as well as establish new theories and methods related to the variation of mechanical properties, has become a hot and difficult research topic in the field of materials science and nanomechanics. In this paper, taking face-centered cubic structure metals as an example, the recent research progress in improving mechanical properties of nanocrystalline materials through grain boundary engineering was comprehensively reviewed. Moreover, several major methods in manipulating grain boundaries in present and their effects on strength and plasticity are emphasized, then underlying strength and toughness mechanisms were comparatively analyzed. Finally, the existing problems and challenges in the research process of this subject were summarized, and the future development direction was prospected.
Key words:  nanocrystalline    grain boundary design    mechanical property    strengthening and toughening
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TG139.8  
基金资助: 国家自然科学基金(52175188); 陕西省自然科学基础项目(2023-JC-QN-0396);陕西省重点研发计划(2023-YBGY-435);长安大学中央高校基本科研业务费专项资金(300102313112)
通讯作者:  * 虢婷,长安大学材料科学与工程学院讲师。2019年12月获得西安交通大学材料科学与工程专业博士学位。2019年12月底任长安大学材料科学与工程学院材料成型及控制工程系讲师。目前主要从事基于先进金属结构薄膜材料(包括纳米晶、非晶及相关纳米复合材料)微结构调控、表征及其与破坏模式和预防相关的研究。主持和参与陕西省重点研发计划、陕西省自然科学基础项目,重点实验室开放基金、中央高校、校企合作等科研项目,在国内外著名学术刊物上发表多篇SCI论文,包括Materials Science and Engineering: A、Surface & Coatings Technology、Journal of Alloys and Compounds、Materials Letters和《材料导报》等,已授权国家发明专利一项。guoting27@chd.edu.cn   
作者简介:  陈卓坤,2021年6月于西安航空学院获得工学学士学位。现为长安大学材料科学与工程学院硕士研究生,在孙志平副教授及虢婷老师的指导下进行研究。目前主要从事先进纳米金属薄膜的塑性变形机制及摩擦磨损行为研究。
引用本文:    
陈卓坤, 张晓芳, 刘语馨, 虢婷, 孙志平, 周青, 陈永楠. 纳米多晶金属的晶界设计及强韧化研究进展[J]. 材料导报, 2024, 38(20): 23070227-9.
CHEN Zhuokun, ZHANG Xiaofang, LIU Yuxin, GUO Ting, SUN Zhiping, ZHOU Qing, CHEN Yongnan. Research Progress in Grain Boundary Design and Strengthening and Toughening of Nanocrystalline Polycrystalline Metals. Materials Reports, 2024, 38(20): 23070227-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070227  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23070227
1 Gleiter H. Progress in Materials Science, 1989, 33(4), 223.
2 Meyers M A, Mishra A, Benson D J. Progress in Materials Science, 2006, 51(4), 427.
3 Rupert T J. Scripta Materialia, 2014, 81, 44.
4 Hall E O. Proceedings of the Physical Society of London, 1951, 64, 747.
5 Petch N J. Journal of the Iron and Steel Institute, 1953, 174, 25.
6 Ovid’ko I A,Valiev R Z, Zhu Y T. Progress in Materials Science, 2018, 94, 462.
7 Turlo V, Rupert T J. Acta Materialia, 2018, 151, 100.
8 Cheng S, Spencer J A, Milligan W W. Acta Materialia, 2003, 51(15), 4505.
9 Peng H R, Jian Z Y, Liu C X, et al. Journal of Materials Science & Technology, 2022, 109, 186.
10 Gupta A, Zhou X, Thompson G B, et al. Acta Materialia, 2020, 190, 113.
11 Naik S N, Walley S M. Journal of Materials Science, 2019, 55(7), 2661.
12 Van Swygenhoven H, Derlet P M, Froseth A G. Acta Materialia, 2006, 54(7), 1975.
13 Rupert T J, Trelewicz J R, Schuh C A. Journal of Materials Research, 2012, 27(9), 1285.
14 Cengeri P, Kerber M B, Schafler E, et al. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2019, 742, 124.
15 Wang Y T, Pan D, Hou H X, et al. Materials Reports, 2022, 36(S1), 381(in Chinese).
王艺橦, 潘栋, 侯华兴, 等. 材料导报, 2022, 36(S1), 381.
16 Zhou X, Li X Y, Lu K. Science, 2018, 360(6388), 526.
17 Zhou X, Li X Y, Lu K. Physical Review Letters, 2019, 122(12), 126101.
18 Li X Y, Jin Z H, Zhou X, et al. Science, 2020, 370(6518), 831.
19 Li X Y, Zhou X, Lu K. Science Advances, 2020, 6(17), eaaz8003.
20 Li X, Lu K. In: 42nd riso international symposium on materials science-microstructural variability. Roskilde, 2022, pp.1249.
21 Yamakov V, Wolf D, Phillpot S R, et al. Nature Materials, 2004, 3(1), 43.
22 Han J H, Zhang Y, Ma Y X, et al. Materials Reports, 2022, 36(24), 117(in Chinese).
韩基鸿, 张洋, 马亚玺, 等. 材料导报, 2022, 36(24), 117.
23 Chen J L, Feng Z X, Yi J H. Materials Reports, 2022, 36(14), 182(in Chinese).
陈今良, 冯中学, 易健宏. 材料导报, 2022, 36(14), 182.
24 Sun Y A, Luo Z P, Li X Y, et al. Acta Materialia, 2022, 239, 118256.
25 He T W, Qi Y M, Ji Y Z, et al. International Journal of Mechanical Sciences, 2023, 238, 107828.
26 Hu J, Shi Y N, Sauvage X, et al. Science, 2017, 355(6331), 1292.
27 Renk O, Hohenwarter A, Schuh B, et al. In:36th riso international symposium on materials science. Riso, 2015, pp.89.
28 Guo T, Ke S, Zhou Q, et al. Journal of Alloys and Compounds, 2022, 925, 166597.
29 Raabe D, Herbig M, Sandlobes S, et al. Current Opinion in Solid State and Materials Science, 2014, 18(4), 253.
30 Kalidindi A R, Schuh C A. Acta Materialia, 2017, 132, 128.
31 Pellicer E, Varea A, Sivaraman K M, et al. ACS Applied Materials & Interfaces, 2011, 3(7), 2265.
32 Hu J, Xiao Z, Huang Y. Materials Science and Engineering: A, 2021, 800, 140261.
33 Babicheva R I, Dmitriev S V, Zhang Y, et al. Computational Materials Science, 2015, 98, 410.
34 Borovikov V, Mendelev M I, King A H. Scripta Materialia, 2018, 154, 12.
35 Zhao D D, Lovvik O M, Marthinsen K, et al. Acta Materialia, 2018, 145, 235.
36 Lohmiller J, Kobler A, Spolenak R, et al. Applied Physics Letters, 2013, 102(24), 241916.
37 Rupert T J, Trenkle J C, Schuh C A. Acta Materialia, 2011, 59(4), 1619.
38 Guo T, Huang P, Xu K W, et al. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2016, 676, 501.
39 Wu G, Chan K C, Zhu L L, et al. Nature, 2017, 545(7652), 80.
40 Xiao L L, Zheng Z Q, Guo S W, et al. Materials & Design, 2020, 194, 108895.
41 Xiao J W, Deng C. Scripta Materialia, 2021, 194, 113682.
42 Wu S S, Kou Z D, Lai Q Q, et al. Nature Communications, 2022, 13(1), 5468.
43 Zhang S, Wang F, Huang P. Journal of Materials Science & Technology, 2021, 87, 176.
44 Mantha L S, Macdonald B E, Mu X K, et al. Acta Materialia, 2021, 220, 117281.
45 Zhou X, Feng Z, Zhu L, et al. Nature, 2020, 579(7797), 67.
46 Kong J A T, Hache M J R, Tam J, et al. Scripta Materialia, 2022, 218, 114799.
47 Ozerinc S, Tai K P, Vo N Q, et al. Scripta Materialia, 2012, 67(7-8), 720.
48 Zhang P, Zhang J Y, Li J, et al. Acta Materialia, 2014, 76, 221.
49 Xu W, Zhang B, Du K, et al. Acta Materialia, 2022, 226, 117640.
50 Wang L H, Wei R J, Fang Y Y, et al. Journal of Beijing University of Technology, 2019, 45(11), 1125(in Chinese).
王立华, 韦如建, 方云义, 等. 北京工业大学学报, 2019, 45(11), 1125.
51 Hu K, Yi J, Huang B, et al. Applied Materials Today, 2022, 29, 101653.
52 Hu K, Yi J, Huang B, et al. Journal of Materials Science & Technology, 2023, 154, 9.
53 Wang Y M, Li J, Hamza A V, et al. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27), 1115.
54 Brandl C, Germann T C, Misra A. Acta Materialia, 2013, 61(10), 3600.
55 Pan Z L, Rupert T J. Acta Materialia, 2015, 89, 205.
56 Schuler J D, Rupert T J. Acta Materialia, 2017, 140, 196.
57 Wu G, Liu C, Sun L G, et al. Nature Communications, 2019, 10, 5099.
58 Khalajhedayati A, Pan Z L, Rupert T J. Nature Communications, 2016, 7, 10802.
59 Schuler J D, Donaldson O K, Rupert T J. Scripta Materialia, 2018, 154, 49.
60 Rupert T J, Schuh C A. Philosophical Magazine Letters, 2012, 92(1), 20.
61 Wen J C, Dai P Q. The Chinese Journal of Nonferrous Metal, 2015, 25(4), 938(in Chinese).
温建程, 戴品强. 中国有色金属学报, 2015, 25(4), 938.
62 Ding Q Q, Zhang Y, Chen X, et al. Nature, 2019, 574(7777), 223.
63 Li H, Zong H X, Li S Z, et al. Nature, 2022, 604(7905), 273.
64 Singh D, Turlo V, Gianola D S, et al. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2023, 870, 144875.
65 Utt D, Lee S, Xing Y L, et al. Nature Communications, 2022, 13(1), 4777.
66 Li Z, Zhang Y, Zhang Z B, et al. Nature Communications, 2022, 13(1), 5581.
67 Li Z, Wang H T, Guo Q, et al. Nano Letters, 2018, 18(10), 6255.
68 Wei B Q, Wu W Q, Nastasi M, et al. International Journal of Plasticity, 2022, 158, 103431.
69 Lu K, Lu L, Suresh S. Science, 2009, 324(5925), 349.
70 Zhao H Z, You Z S, Tao N R, et al. Acta Materialia, 2021, 210, 116830.
71 Zhang D D, Wang H, Zhang J Y, et al. Journal of Materials Science & Technology, 2021, 87, 184.
72 Liu M P, Ren X Y, Chen Y L, et al. The Chinese Journal of Nonferrous Metal, 2023, 33(6), 1695(in Chinese).
刘满平, 任晓宇, 陈昱林, 等. 中国有色金属学报, 2023, 33(6), 1695.
73 Zhang D D, Zhang J Y, Kuang J, et al. Acta Materialia, 2021, 220, 117288.
74 Yang T, Zhao Y L, Li W P, et al. Science, 2020, 369(6502), 427.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[11] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[12] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[13] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[14] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[15] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed