Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23070234-7    https://doi.org/10.11896/cldb.23070234
  高分子与聚合物基复合材料 |
PLA/PEG@SiO2超细纤维包装材料及其日间辐射降温性能
李晗1, 张恒1,*, 赵珂1, 杨自强2, 甘益2, 秦子轩1, 翟倩1, 甄琪3
1 中原工学院智能纺织与织物电子学院,郑州 451191
2 河南逸祥卫生科技有限公司,郑州 452373
3 中原工学院智能服饰与服装学院,郑州 451191
PLA/PEG@SiO2 Microfiber Packaging and Its Daytime Radiation Cooling Performance
LI Han1, ZHANG Heng1,*, ZHAO Ke1, YANG Ziqiang2, GAN Yi2, QIN Zixuan1, ZHAI Qian1, ZHEN Qi3
1 College of Intelligent Textile and Fabric Electronics of Zhongyuan University of Technology, Zhengzhou 451191, China
2 Henan Yeesain Health Technology Co., Ltd., Zhengzhou 452373, China
3 College of Fashion Technology of Zhongyuan University of Technology, Zhengzhou 451191, China
下载:  全 文 ( PDF ) ( 4653KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超细纤维材料兼具有纸的印刷性、加工性和膜的阻隔性、贴合性,广泛适用于柔性包装领域,如何有效降低包装内温度并保证物资安全是柔性包装材料领域和安全防护纺织品领域的共性关键问题。基于此,本工作提出将二氧化硅(SiO2)引入聚乳酸/聚乙二醇(PLA/PEG)共混体系中,通过熔喷非织造方法制备PLA/PEG@SiO2超细纤维材料,并对其物理结构、力学性能和辐射降温性能进行试验分析。结果表明:SiO2对PLA成核结晶有积极作用,可以有效改善PLA结晶行为;SiO2颗粒负载于纤维表面,有效提升了纤维表面粗糙度(Sa);随着SiO2质量分数从0%增大到2.5%,纤维平均直径从2.65 μm增大至7.11 μm,表面粗糙度从7.4 μm增大至12.7 μm。受益于上述超细纤维结构特征,PLA/PEG@SiO2超细纤维材料样品发射率和反射率最高可至87.5%和98.1%,测试温差最高可达8.9 ℃,具有优异的日间辐射降温性能。同时,PLA/PEG@SiO2超细纤维材料样品对水、茶和咖啡等液体有优异的屏蔽性能,并表现出良好的可印刷书写性和异形裁剪性,有望为柔性包装和户外运动等领域提供一种新型日间辐射降温用柔性纤维材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晗
张恒
赵珂
杨自强
甘益
秦子轩
翟倩
甄琪
关键词:  超细纤维  包装  聚乳酸(PLA)  二氧化硅(SiO2)  熔喷  日间辐射降温  非织造    
Abstract: Microfiber materials are widely used in the field of flexible packaging with both the printability and processability of paper, and the barrier and laminating properties of film, there is a key problem common to the field of flexible packaging materials and safety textiles: how to effectively reduce the internal temperature of the package to ensure the safety of materials. Based on this, this work proposes to introduce silicon dioxide (SiO2) into poly lactic acid/poly ethylene glycol (PLA/PEG) blending system, then prepare PLA/PEG@SiO2 microfiber material by melt blown, and test its physical structure, mechanical properties and radiative cooling properties. The results show that SiO2 has a positive effect on the nucleation and crystallization of PLA, which can effectively improve the crystallization behavior of PLA; SiO2 particles can be loaded on the fiber surface, which effectively improves the surface roughness (Sa) of the fibers; and as the mass ratio of SiO2 is increased to 2.5%, the average diameter of the fibers increases to 7.11 μm, and the surface roughness increases to 12.7 μm. Benefit from the above microfiber structure characteristics of microfiber material samples emissivity and reflectivity up to 87.5% and 98.1%, the test temperature difference of up to 8.9 ℃, with excellent daytime radiation cooling performance. In addition, the PLA/PEG@SiO2 microfiber material exhibits excellent shielding performance against liquids such as water, tea and coffee, exhibit good printability and shaped cutability, which is expected to provide a new flexible fiber material for daytime radiative cooling in the fields of flexible packaging and outdoor sports.
Key words:  microfiber    package    polylactic acid (PLA)    silicon dioxide (SiO2)    melt blown    daytime radiation cooling    nonwovens
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TB484  
基金资助: 河南省高校科技创新人才支持计划(24HASTIT011);河南省重大科技专项(231100320200);中原工学院优秀科技创新人才支持计划(K2023YXRC01);中原工学院学科骨干教师支持计划(GG202422)
通讯作者:  * 张恒,河南省高校科技创新人才、硕士研究生导师。目前主要围绕非织造材料成型过程中的纤维形态演变规律、仿生结构调控机制和物质传输特性等关键科学问题开展应用基础研究。近五年在Small、Mater Design、Applied Surface Science、《材料导报》和《纺织学报》等国内外高水平期刊上发表SCI/EI学术论文70余篇,授权专利20余项。zhangheng2699@zut.edu.cn   
作者简介:  李晗,2020年6月毕业于中原工学院,获得工学学士学位。现为中原工学院纺织学院硕士研究生,在张恒副教授的指导下进行研究。目前研究方向为功能性非织造材料的高质应用。
引用本文:    
李晗, 张恒, 赵珂, 杨自强, 甘益, 秦子轩, 翟倩, 甄琪. PLA/PEG@SiO2超细纤维包装材料及其日间辐射降温性能[J]. 材料导报, 2024, 38(20): 23070234-7.
LI Han, ZHANG Heng, ZHAO Ke, YANG Ziqiang, GAN Yi, QIN Zixuan, ZHAI Qian, ZHEN Qi. PLA/PEG@SiO2 Microfiber Packaging and Its Daytime Radiation Cooling Performance. Materials Reports, 2024, 38(20): 23070234-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070234  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23070234
1 Nechita P, Roman M. Coatings, 2020, 10, 6.
2 Mohamed S A A, El-Sakhawy M, El-Sakhawy M A M. Carbohydrate Polymers, 2020, 238, 116178.
3 Aman M M, Hosseini S M, Yousefi M. Food Science & Nutrition, 2020, 8(9), 4656.
4 Yuan R, Wu K, Fu Q. Carbohydrate Polymers, 2022, 294, 119784.
5 Wang Y, Liu X, Lian M, et al. Applied Materials Today, 2017, 9, 77.
6 Ponnusamy P G, Sharma S, Mani S. Journal of Applied Polymer Science, 2022, 139(24), 52329.
7 Zhang Y J, Tong J J, Ye X Y, et al. Journal of Silk, 2022, 59(7), 29(in Chinese).
张宇静, 童珈珈, 叶翔宇, 等. 丝绸, 2022, 59(7), 29.
8 Hermawan D, Hazwan C M, Owolabi F a T, et al. Progress in Rubber, Plastics and Recycling Technology, 2019, 35(4), 173.
9 Kashiwabara L M, Kahane-Rapport S R, King C, et al. Marine Pollution Bulletin, 2021, 165, 112148.
10 Guo Q Q, Xiao M R, Ma Y, et al. Journal of Hazardous Materials, 2021, 405, 124701.
11 Mutmainna I, Tahir D, Gareso P L, et al. IOP Conference Series: Materials Science and Engineering, 2019, 593(1), 012024.
12 Zheng Q. Polymer Bulletin, 2022, 35(4), 1(in Chinese).
郑强. 高分子通报, 2022, 35(4), 1.
13 Ncube L K, Ude A U, Ogunmuyiwa E N, et al. Materials, 2020, 13, 1.
14 Li D, Liu X, Li W, et al. Nature Nanotechnology, 2021, 16(2), 153.
15 Song Y N, Li Y, Yan D X, et al. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105738.
16 Dou Y, Fan T X. Materials Reports, DOI:10.11896/cldb.24060008.(in Chinese).
豆裕, 范同祥. 材料导报, DOI:10.11896/cldb.24060008.
17 Shen H, Tan Z M, Li D S, et, al. Materials Reports, DOI:10.11896/cldb.24050134(in Chinese).
沈浩, 谭志敏, 李东升. 材料导报, DOI:10. 11896/cldb. 24050134.
18 Sun H W, Zhang H, Cui J Q, et al. Journal of Textile Research, 2022, 43(6), 86(in Chinese).
孙焕惟, 张恒, 崔景强, 等. 纺织学报, 2022, 43(6), 86.
19 Kara Y, Molnár K. Journal of Industrial Textiles, 2021, 51, 137.
20 Zhang H, Zhen Q, Liu Y, et al. Results in Physics, 2019, 12, 1421.
21 Sun H W, Zhang H, Zhen Q, et al. Polymer Materials Science & Engineering, 2022, 38(5), 146(in Chinese).
孙焕惟, 张恒, 甄琪, 等. 高分子材料科学与工程, 2022, 38(5), 146.
22 Awal A, Rana M, Sain M. Mechanics of Materials, 2015, 80, 87.
23 Soltani I, Macosko C W. Polymer, 2018, 145, 21.
24 Cheng N, Miao D, Wang C, et al. Chemical Engineering Journal, 2023, 460, 141581.
[1] 丁诗娟, 崔玲娜, 刘跃军. 拉伸成膜工艺诱导聚乳酸结晶行为的研究进展[J]. 材料导报, 2024, 38(18): 23030182-9.
[2] 张斌, 陶文轩, 裴爽, 任子铭, 潘政, 苟进胜. 剪切增稠液增强高发泡率废纸缓冲材料的制备及性能[J]. 材料导报, 2024, 38(1): 22050253-10.
[3] 郑皓华, 邓雅洁, 吴志林. 纳米包装材料表面改性技术及包装形态表现研究[J]. 材料导报, 2022, 36(19): 21110079-5.
[4] 万罗佳, 时钢印. 基于专利分析的口罩聚丙烯熔喷布技术竞争态势[J]. 材料导报, 2021, 35(Z1): 522-529.
[5] 孙焕惟, 张恒, 李霞, 甄琪, 崔景强, 钱晓明, 张一风. 形状记忆聚氨酯及其非织造材料成型方法研究进展[J]. 材料导报, 2021, 35(23): 23212-23218.
[6] 郭韵恬, 王汉青. 稀土镧掺杂纳米二氧化钛复合保鲜包装薄膜的研究[J]. 材料导报, 2018, 32(24): 4357-4362.
[7] 李磊,程博闻,康卫民,马晓光,庄旭品. 静电溶液喷射Fe2O3/Al2O3超细纤维负载型光催化剂的制备及催化性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 207-212.
[8] 毛龙, 刘跃军, 白永康, 刘小超. 原位接枝聚合改性LDHs/PCL纳米复合薄膜的制备及氧气阻隔性能*[J]. 《材料导报》期刊社, 2017, 31(18): 43-48.
[9] 韩旭, 韩振邦, 赵晓明, 赵晋, 赵世怀. Cu/Fe双金属负载PAN非织造布催化降解甲醛气体研究*[J]. 《材料导报》期刊社, 2017, 31(16): 31-35.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed