Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23212-23218    https://doi.org/10.11896/cldb.20050152
  高分子与聚合物基复合材料 |
形状记忆聚氨酯及其非织造材料成型方法研究进展
孙焕惟1, 张恒1,2, 李霞1,2, 甄琪2,3, 崔景强2,4, 钱晓明5, 张一风1
1 中原工学院纺织学院,郑州 451191
2 河南省医用高分子材料技术与应用重点实验室,新乡 453400
3 中原工学院服装学院,郑州 451191
4 河南驼人医疗器械集团有限公司,新乡 453400
5 天津工业大学纺织科学与工程学院,天津 300387
A Review on the Shape Memory Polyurethane and Its Nonwoven Progress
SUN Huanwei1, ZHANG Heng1,2, LI Xia1,2, ZHEN Qi2,3, CUI Jingqiang2,4, QIAN Xiaoming5, ZHANG Yifeng1
1 School of Textiles, Zhongyuan University of Technology, Zhengzhou 451191, China
2 Henan Key Laboratory of Medical Polymer Materials Technology and Application, Xinxiang 453400, China
3 School of Clothing, Zhongyuan University of Technology, Zhengzhou 451191, China
4 Henan Tuoren Medical Device Co., Ltd., Xinxiang 453400, China
5 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 7783KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 非织造材料作为一种通过物理或化学方法制成的具有工程结构完整性的纤维集合体,是一种源于纺织技术的功能性纤维材料,目前已广泛应用于医疗卫生、过滤分离和土木建筑等各个领域。随着非织造材料的广泛应用,其结构的优化与性能的提高显得尤为重要。形状记忆聚氨酯作为一种典型的形状记忆高分子材料,具有易加工、形变量大、形状记忆效果突出和多样化刺激方式等优点,广泛应用于医疗卫生、航空航天和纺织服装等领域。将形状记忆聚氨酯与非织造成型技术结合,不仅可以保持非织造材料原有特性,还可以赋予其形状记忆功能,为非织造技术的创新与升级提供驱动力,同时也为形状记忆材料的高质应用提供研究方向。
目前形状记忆聚氨酯非织造材料的成型方法主要包括共混应用法、直接成网法以及后整理应用法。其中共混应用法包括复合纤维成网和共混纺丝,其优势在于纤维或聚合物之间可充分混合,形状记忆效果均匀;直接成网法包括静电纺丝法和熔喷法,静电纺丝法目前研究最广泛,其优势在于所得纳米级非织造材料质量轻、孔径多且成本低,可用于制备高性能复合材料。熔喷法形状记忆聚氨酯非织造材料结构蓬松、纤网孔隙小且孔隙率大,可广泛应用于吸油材料、过滤材料和隔音材料等领域;后整理应用法包括涂敷及形状记忆聚氨酯的溶液形式应用,其优势在于操作简便、成本低,且形状记忆效果优良。目前形状记忆聚氨酯非织造材料的应用依然处于实验室研究阶段,要实现产业化、功能化的应用还需要进一步的探索与研究。
本文阐述了形状记忆聚氨酯的记忆机理、分类和应用领域等,分析了形状记忆聚氨酯非织造材料成型方法的研究进展,为形状记忆聚氨酯非织造材料今后的研发与高质应用提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙焕惟
张恒
李霞
甄琪
崔景强
钱晓明
张一风
关键词:  形状记忆聚氨酯  非织造材料  成型方法  功能性纤维材料    
Abstract: As a fibrous material with engineering structure, nonwoven made by physical or chemical methods is a functional fabric which derived from textile technology. And the nonwovens have been widely used in various fields such as medical treatment, filtration and separation,civil and construction. Thus, optimizing the structure and enhancing the performance of the nonwovens are the urgently topics for the high-quality application. Nowadays, one of the shape memory polymers, shape memory polyurethane (SMPU) has been widely used in medical and health, aerospace, textile and clothing fields due to its advantages of easy processing, large deformation, outstanding shape memory effect and diverse sti-mulation methods. It can be seen that the combining the SMPU and nonwoven technology will maintain the original characteristics of nonwovens while providing the shape memory functions. This provides a drive for the innovation and upgrading of nonwoven technology, and also provides a basis for the high-quality application of shape memory materials.
Presently, the preparation of SMPU nonwovens mainly include blending, direct-web-forming and post-processing methods. The blending met-hod can be divided into composite fiber web-forming and blending spinning. The blending method has an advantage of uniform of shape memory effect resulted from the of the fully mixed of the fibers or polymers. Besides, the direct-web-forming method can be divided into categories of electrospinning and melt blowing. The electrospinning has been widely used in the preparing of nano-scale nonwovens with light weight, multi-pore and low cost. In contrast, the SMPU nonwovens from the melt blowing process have serious properties i.e fluffy structure, small pore size and large porosity, and have be widely used in oil absorbing materials, filtration materials and sound insulation etc. Further, post-processing method mainly applied in the coating and solution has the advantages of simple operation, low cost, and excellent shape memory effect. However, the application of SMPU nonwovens still limited in the laboratory and serious bottlenecks should be overcome for the large scale industrialization and functional applications.
In this work, the shape memory mechanism, classification and application are reviewed and the research progress of the preparation method is analyzed of the SMPU nonwovens for the purpose of further development and high-quality application.
Key words:  shape memory polyurethane    nonwovens    preparation method    functional fibrous material
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  TS1971  
基金资助: 国家自然科学基金项目(52003306);国家生物医用材料生产应用示范平台项目(TC190H3ZV/1);河南省高等学校重点科研项目(20A540001);河南省医用高分子材料技术与应用重点实验室(1-TR-B-03-210117);中原工学院自主创新应用研究项目(K2020YY002)
通讯作者:  zhangheng2699@zut.edu.cn   
作者简介:  孙焕惟,2019年6月毕业于中原工学院,获得工学学士学位。现为中原工学院纺织学院硕士研究生,在张恒博士的指导下进行研究。目前研究方向为功能性非织造材料的高质应用。
张恒,博士,中原工学院教师、硕士生导师,目前主要从事先进纺织材料的新型成型技术及其功能性应用方面的研究工作。近5年在Polymer、ACS Appl. Polym. Mater、Polym Test和纺织学报等国内外高水平期刊上发表SCI/EI学术论文30余篇,授权发明专利17项。
引用本文:    
孙焕惟, 张恒, 李霞, 甄琪, 崔景强, 钱晓明, 张一风. 形状记忆聚氨酯及其非织造材料成型方法研究进展[J]. 材料导报, 2021, 35(23): 23212-23218.
SUN Huanwei, ZHANG Heng, LI Xia, ZHEN Qi, CUI Jingqiang, QIAN Xiaoming, ZHANG Yifeng. A Review on the Shape Memory Polyurethane and Its Nonwoven Progress. Materials Reports, 2021, 35(23): 23212-23218.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050152  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23212
1 Qian X M, Zhang H. China Textile Leader, 2020(1), 65(in Chinese).
钱晓明, 张恒. 纺织导报, 2020(1), 65.
2 Jiao H P, Qian X M, Qian Y, et al. New Chemical Materials, 2019,47(12), 27 (in Chinese).
焦宏璞, 钱晓明, 钱幺, 等.化工新型材料, 2019, 47(12), 27.
3 Chen G L, Ao L M, Qian C. Technical Textiles, 2019, 37(9), 40 (in Chinese).
陈光林, 敖利民, 钱程. 产业用纺织品, 2019, 37(9), 40.
4 Wang X Z, Qian X M.. Technical Textiles, 2019, 37(3), 6 (in Chinese).
王鑫竹, 钱晓明. 产业用纺织品, 2019, 37(3), 6.
5 Wang X Z, Qian X M, Huang S W. Progress in Textile Science and Technology, 2017(11), 1 (in Chinese).
王鑫竹, 钱晓明, 黄顺伟. 纺织科技进展, 2017(11), 1.
6 Bi H J, Gu Y L. Technical Textiles, 2002 (4), 11 (in Chinese).
毕红军, 顾钰良. 产业用纺织品, 2002 (4), 11.
7 Wang K J, Strandman S, Zhu X X. Frontiers of Chemical Science and Engineering, 2017, 11(2), 143.
8 Ma N N, Lu Y H, Dai H Q. Journal of Textile Research, 2018, 39(4), 170 (in Chinese).
马妮妮, 卢业虎, 戴宏钦.纺织学报, 2018, 39(4), 170.
9 Cui H, Wang F, Hu J Q, et al. Materials Review A: Review Papers, 2017, 31(2), 1 (in Chinese).
崔航, 王锋, 胡剑青, 等.材料导报:综述篇, 2017, 31(2), 1.
10 Fiorito F, Sauchelli M, Arroyo D, et al.. Renewable & Sustainable Energy Reviews, 2016, 55, 863.
11 Rodriguez E D, Luo X, Mather P T. ACS Applied Materials & Interfaces, 2011, 3(2), 152.
12 Meng Q, Hu J, Zhu Y, et al. Textile Research Journal, 2009, 79(16), 1522.
13 Liu Y, Zhao J, Zhao L, et al. ACS Applied Materials & Interfaces, 2016, 8(1), 311.
14 Yang J, Xie G Y. Progress of Textile Science and Technology, 2012(3), 13 (in Chinese).
杨杰, 谢光银. 纺织科技进展, 2012(3), 13.
15 Chen Y, Peng Z, Zhang H, et al. China Plastics, 2010, 24(4), 54.
16 Liu T, Huang R, Qi X, et al. Polymer, 2017, 114, 28.
17 Ji X X, Shi X Y. China Synthetic Rubber Industry, 2019, 42(3), 242 (in Chinese).
季行行, 史新妍. 合成橡胶工业, 2019, 42(3), 242.
18 Pilate F, Mincheva R, Winter J D, et al. Chemistry of Materials, 2014, 26(20). 5860.
19 Zhang J W, Bai Y K, Chen X. Scientia Sinica Techologica, 2020, 50(12), 1546 (in Chinese).
张纪雯, 白永康, 陈鑫.中国科学:技术科学, 2020, 50(12), 1546.
20 Golbang A, Kokabi M. European Polymer Journal, 2011, 47(8), 1709.
21 Yakacki C M, Satarkar N S, Gall K, et al. Journal of Applied Polymer Science, 2009, 112(5), 3166.
22 Razzaq M Y, Anhalt M, Frormann L, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2007, 444(1-2), 227.
23 Zheng S, Zhu G, Zhang L. China Plastics, 2012, 26(1), 12.
24 Wang M, Ying S, Wang C. Materials China, 2018, 37(5), 379.
25 Sattar R, Kausar A, Siddiq M. Thermal, Chinese Journal of Polymer Science, 2015, 33(9), 1313.
26 Hane K F, Shield T W. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2000, 291(1-2), 147.
27 Wache H M, Tartakowska D J, Hentrich A, et al. Journal of Materials Science-Materials in Medicine, 2003, 14(2), 109.
28 Kim B K, Lee S Y, Xu M. Polymer, 1996, 37(26), 5781.
29 Tobushi H, Shimada D, Hayashi S, et al. Proceedings of the Institution of Mechanical Engineers Part L-Journal of Materials-Design and Applications, 2003, 217(L2), 135.
30 Tobushi H, Okumura K, Hayashi S, et al. Mechanics of Materials, 2001, 33(10), 545.
31 Rickert D, Lendlein A, Schmidt A M, et al. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2003, 67B(2), 722.
32 Lendlein A, Langer R. Science, 2002, 296(5573), 1673.
33 Jeong H M, Song J H, Chi K W, et al. Polymer International, 2002, 51(4), 275.
34 Jeong H M, Ahn B K, Kim B K. European Polymer Journal, 2001, 37(11), 2245.
35 Luo X L, Zhao M C, Wang M Z, et al. Chinese Journal of Polymer Science, 2000, 18(4), 357.
36 Ma D Z, Xu M, Li F K. Journal of China University of Science and Technology, 1997 (1), 107 (in Chinese).
马德柱, 徐懋, 李凤奎.中国科学技术大学学报, 1997 (1), 107.
37 Lin J R, Chen L W. Journal of Applied Polymer Science, 1999, 73(7), 1305.
38 Cho J W, Jung Y C, Lee S H, et al. Fibers and Polymers, 2003, 4(3), 114.
39 Chun B C, Kim D E, Choi J W. Polymer-Plastics Technology and Mate-rials, 2019, 58(6), 656.
40 Leng J, Zhao W, Liu L. Manned Spaceflight, 2016, 22(5), 594.
41 Leng J S, Lan X, Liu Y J, et al. Journal of Chinese Society of Astronautics, 2010, 31(4), 950.
42 Xu L, Fu Y, Du M. Chinese Journal of Chemistry, 2011, 29(4), 703.
43 Dong Y, Zhu Y, Liu M, et al. Materials Today Communications, 2018, 17, 133.
44 Fu Y, Han C, Ni Q, et al. Chinese Journal of Materials Research, 2009, 23(6), 572.
45 Han J, Zhu Y, Hu J, et al. Journal of Applied Polymer Science, 2012, 123(2), 749.
46 Hu J, Zhang C, Li X, et al. Polymer Chemistry, 2017, 8(1), 260.
47 Zhu Y, Hu J, Choi K F, et al. Polymers for Advanced Technologies, 2008, 19(4), 328.
48 Xu L, Fu Y, Ni Q. Acta Polymerica Sinica, 2011, 10, 1132.
49 Yan Y, Xia H, Qiu Y, et al. Composites Science and Technology, 2019, 172, 108.
50 Chen H, Xia H, Qiu Y, et al. Composites Science and Technology, 2018, 163, 123.
51 Quan Q Y, Hu J L, Lyu J, et al. China Textile Leader, 2012(4), 99 (in Chinese).
全琼瑛, 胡金莲, 吕晶, 等.纺织导报, 2012(4), 99.
52 Sun F R, He Y, Wei Y H, et al. China Plastics Industry, 2017, 45(4), 5 (in Chinese).
孙芙蓉, 何屹, 魏燕红, 等.塑料工业, 2017, 45(4), 5.
53 Kashyap D, Kumar P K, Kanagaraj S. 4D Additive Manufacturing, 2018, 24, 687.
54 Chen L G, He D, Wang X J, et al. Chinese Journal of Colloid & Polymer, 2014, 32(1), 17 (in Chinese).
陈路果, 何栋, 王雪菁, 等.胶体与聚合物, 2014, 32(1), 17.
55 Saenz-Perez M, Bashir T, Manuel Laza J, et al. Textile Research Journal, 2019, 89(6), 1027.
56 Aslan S, Kaplan S. Fibers and Polymers, 2018, 19(2), 272.
57 Turan D, Gunes G, Guner F S. Packaging Technology and Science, 2016, 29(7), 415.
58 Zhao S M, Dai Z W, Lyu H N, et al. In: International Conference on Chemical, Material and Metallurgical Engineering. Beihai, China, 2011, pp. 1547.
59 Shi S, Zhang Y, Shen D, et al. Composites Science and Technology, 2018, 164, 17.
60 De Nardo L, Alberti R, Cigada A, et al. Acta Biomaterialia, 2009, 5(5), 1508.
61 Yan Y, Xia H, Qiu Y, et al. RSC Advances, 2019, 9(17), 9401.
62 Kang S, Kang T H, Kim B S, et al. Composites Part B-Engineering, 2019, 162, 580.
63 Yu J, Xia H, Teramoto A, et al. Journal of Biomedical Materials Research Part A, 2018, 106(1), 244.
64 陈宏武, 周彬, 王慧玲. 中国专利, CN204016897U, 2014.
65 李建全, 李庆林. 中国专利, CN102230256A, 2011.
66 Wang C Y, Shao P Y, Yang Z J. Technical Textiles, 2016, 34(5), 27 (in Chinese).
王彩英, 邵鹏洋, 杨正娟.产业用纺织品, 2016, 34(5), 27.
67 Ye W, Zhong H, Yan X F. Technical Textiles, 2017, 35(12), 28 (in Chinese).
叶伟, 钟浩, 严雪峰.产业用纺织品, 2017, 35(12), 28.
68 Safranski D L, Boothby J M, Kelly C N, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 545.
69 Zhuo H, Hu J, Chen S. Materials Letters, 2008, 62(14), 2074.
70 Zhuo H, Hu J, Chen S. Textile Research Journal, 2011, 81(9), 883.
71 Zhuo H, Hu J, Chen S. Journal of Materials Science, 2011, 46(10), 3464.
72 Budun S, Isgoren E, Erdem R, et al. Applied Surface Science, 2016, 380, 294.
73 Lou L, Fu Y. Journal of Textile Research, 2006, 27(12), 77.
74 Xiong Y, Zhang D J, Wu Y Z, et al. Journal of Materials Science and Engineering, 2009, 27(1), 99.
75 Yang L C, Huang Y P. Journal of Anhui University, 2012, 36(6), 97 (in Chinese).
杨立春, 黄毅萍.安徽大学学报, 2012, 36(6), 97.
No related articles found!
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed