Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23219-23228    https://doi.org/10.11896/cldb.20070094
  高分子与聚合物基复合材料 |
复合材料Tufting缝合技术的研究进展
杨宏宇1,2, 吴宁1,2, 王玉1,2, 朱超1,2, 张一帆1,2, 陈利1,2
1 天津工业大学先进纺织复合材料教育部重点实验室,天津 300387
2 天津工业大学纺织科学与工程学院,天津 300387
The Application of Tufting Suture Technology on Composite Structures:a Review
YANG Hongyu1,2, WU Ning1,2, WANG Yu1,2, ZHU Chao1,2, ZHANG Yifan1,2, CHEN Li1,2
1 Key Laboratory of Advanced Textile Composites, Tianjin Polytechnic University, Tianjin 300387, China
2 College of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 14424KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 缝合技术通过在预制织物的厚度方向引入增强纤维,能够将2D铺层复合材料变为准3D复合材料,显著提高复合材料的抗分层性能及耐损伤容限,在军事、民用领域均有广泛的应用。但是由于缝合技术需要缝纫机上下部件之间提供很大的操作空间,这对缝合设备提出了更高的要求,且缝合线之间存在互锁,往往会降低复合材料的面内性能,这些因素大大限制了其在高性能纤维增强复合材料生产制备中的应用。在此背景下,一种单边缝合新技术应运而生。
Tufting缝合是一种单边缝合技术,是由Tufting缝合针携带缝合线从预制织物的一侧经过穿刺、退针运动后,将缝合线通过简单的摩擦作用留在织物内部,缝合线上几乎没有张力。这一技术节约了操作空间,降低了大型缝合设备的研发成本,同时减少了复合材料的成型缺陷,为异形大厚度织物的缝合提供了解决方案,是一种极具发展潜力的复合材料Z向加固技术。
Tufting缝合领域的研究主要集中于自动化缝合技术、预制织物的成形技术以及Tufting缝合复合材料的制备与表征技术三个方面。近年来,Tufting缝合复合材料的制件尺寸、复杂程度、制备和成型效率都得到大幅提升。然而,Tufting缝合技术在质量稳定性、效率以及制件结构和尺寸等方面有一定的局限性,难以实现广泛的工业化生产和应用。
本文主要综述了近年来Tufting缝合技术的发展现状,介绍了Tufting缝合装置的类型和最新技术进展,分析了Tufting缝合过程参数对预制织物成形及性能的影响,归纳了Tufting缝合复合材料力学性能及微观损伤的表征分析,最后提出了本领域亟待解决的问题和主攻方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨宏宇
吴宁
王玉
朱超
张一帆
陈利
关键词:  Tufting缝合  摩擦  复合材料  层合板  预制织物    
Abstract: By introducing reinforcing fibers in the thickness direction of the prefabricated fabric, the stitching technology can change 2D lay-up compo-sites into quasi-3D composites, which significantly improves the delamination resistance and damage tolerance of the composites, and is widely used in military and civil applications. However, since the stitching technique requires a large operating space between the upper and lower parts of the sewing machine, which poses a higher challenge to the stitching equipment, and the through-thickness stitching threads reduce the in-plane properties of the resulting composite, the production and preparation of high-performance fiber-reinforced composites can be greatly limited. In this case, a new one-side stitching technique has come into being.
Tufting suture is a kind of one-side stitching technique in which a Tufting needle carries the thread from one side of the prefabricated fabric through a piercing and retracting motion, leaving the thread inside the fabric by friction without tension. This technology saves operation space, reduces the development cost of large-scale stitching equipment, and reduces the defects of composite materials, providing a solution for the sewing of shaped large thickness fabrics, making it a highly promising Z-directional reinforcement technology for composite materials.
The Tufting suture technique field mainly focuses on three aspects: automated Tufting suture technology, forming technology of prefabricated fabrics, and the preparation and characterization techniques of tufted composite materials. In recent years, the size, complexity, preparation, and for-ming efficiency of tufted composite materials have been greatly improved. However, Tufting suture technology has certain limitations in terms of quality stability, efficiency, structure, and the size of composite materials, and it is difficult to achieve widespread industrial products and applications.
This paper mainly reviews the development status of Tufting suture technology, the types of Tufting suture devices, and the latest technological progress. The influence of Tufting suture parameters on the formation and performance of fabric preforms are analyzed, and the characterization analysis of mechanical properties and micro-damage of the Tufting composite are summarized. Finally,urgent problems and some main directions in this field are proposed.
Key words:  Tufting suture    friction    composite structure    laminate    prefabricated fabrics
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  TB33  
基金资助: 天津市教委科研计划重点项目(2019ZD03);国家自然基金项目(11802203);天津市高等学校创新团队培养计划(TD13-5043)
通讯作者:  wuning@tiangong.edu.cn   
作者简介:  杨宏宇,2018年毕业于盐城工学院,获得工学学士学位,现为天津工业大学纺织科学与工程学院硕士研究生,在吴宁副研究员的指导下开展研究。主要研究方向为缝合复合材料的层间性能。
吴宁,天津工业大学副研究员,博士研究生导师,入选2014年“天津市‘131’创新型人才培养工程第三层次”人才项目。2010年博士毕业于江南大学,同年任教于天津工业大学复合材料研究所。读博期间(2008—2009)以联合培养博士生身份在美国佐治亚理工学院进修。于2015—2016 年,在加拿大英属哥伦比亚大学先进纤维材料实验室进行访问、合作研究。以第一作者和通讯作者在国内外学术期刊上发表论文40余篇,申请国家发明专利7项,其中授权3项。主要研究方向包括复合材料层间功能化构建;高性能纤维的表面与界面;纺织结构复合材料等。近年来,主持国家自然科学基金、天津市教委科技计划重点项目和多项航空航天领域重点项目等。
引用本文:    
杨宏宇, 吴宁, 王玉, 朱超, 张一帆, 陈利. 复合材料Tufting缝合技术的研究进展[J]. 材料导报, 2021, 35(23): 23219-23228.
YANG Hongyu, WU Ning, WANG Yu, ZHU Chao, ZHANG Yifan, CHEN Li. The Application of Tufting Suture Technology on Composite Structures:a Review. Materials Reports, 2021, 35(23): 23219-23228.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070094  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23219
1 Kim C H, Jo D H, Choi J H. Composite Structures, 2017, 178, 225.
2 Gnaba I, Legrand X, Wang P, et al. IOP Conference Series Materials Science and Engineering, 2017, 254(4), 42011.
3 Wang X F, Gao T C, Xiao J. Journal of Textile Research, 2019, 40(12), 169 (in Chinese).
王显峰,高天成,肖军. 纺织学报, 2019, 40(12), 169.
4 Yang L Y, Huang D M. Fiber Reinforced Plastics/Composites, 2018(5), 96 (in Chinese).
杨龙英,黄当明. 玻璃钢/复合材料, 2018(5), 96.
5 Gnaba I, Legrand X, Wang P, et al. Journal of Industrial Textiles, 2018, 49(1), 71.
6 Chan H, Peng W, Xavier L. Composite Structures, 2019, 220, 423.
7 Henao A, Picón J, Cuartero J, et al. Mechanics of Advanced Materials and Structures, 2015, 22(12), 1016.
8 Mouritz A P, Cox B N. Composites Part A: Applied Science and Manufacturing, 2000, 31(1), 1.
9 Shen H, Wang P, Legrand X, et al. Composite Structures, 2019, 228, 111356.
10 Kundan K,Verma G, Padmakara K M, et al. Composites Part B: Engineering, 2019, 174, 106970.
11 Dell'Anno G, Treiber J W G, Partridge I K. Robotics and Computer-Integrated Manufacturing, 2016, 37, 262.
12 Scott M, Dell A G, Clegg H. Applied Composite Materials, 2018, 25(4), 785.
13 Clegg H, Dellnno G, Partridge I. Advances in Aircraft and Spacecraft Science, 2019, 6, 145.
14 Mills A, Jones J. Journal of Aerospace Engineering, 2010, 224, 489.
15 Clegg H, Anno G D, Partridge I K. In: 7th International Symposium on Aircraft Materials (ACMA2018). Compiègne, France, 2018.
16 Lombetti D M. Tufting of complex composite structures. Ph.D. Thesis, Cranfield University, UK, 2015.
17 Verma K K, Viswarupachari C H, Viswamurthy S R, et al. Composite Structures, 2020, 250, 112468.
18 Cartié D D R, Dell Anno G, Poulin E, et al. Engineering Fracture Mechanics, 2006, 73(16), 2532.
19 Préau M, Treiber J, Partridge I. In: 17èmes Journées Nationales sur les Composites (JNC17). Poitiers-Futuroscope, France, 2011, pp. 125.
20 Wang Y, Soutis C. Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics, 2016, 169(4), 158.
21 Treiber J W G, Cartié D D R, Partridge I K. In: ICCM-17 Int. Conf. Compos. Mater. Edinburgh, UK, 2009.
22 Liu L, Wang P, Legrand X, et al. In: Proceedings of the 19th International ESAFORM Conference on Material Forming. Nantes, France, 2016.
23 Liu L, Wang P, Legrand X, et al. Composite Structures, 2017, 172, 221.
24 Liu L, Zhang T, Wang P, et al. Composites Part A: Applied Science and Manufacturing, 2015, 78, 403.
25 Gnaba I, Wang P, Legrand X, et al. Advances in Aircraft and Spacecraft Science, 2019, 6, 105.
26 Shen H, Wang P, Legrand X, et al. Composites Part A: Applied Science and Manufacturing, 2019, 127, 105651.
27 Wittig J. Journal of Textile and Apparel, Technology and Management, 2001.
28 Sickinger C, Herrmann A. In: 11th International Techtextil-Symposium for Technical Textiles, Nonwovens and Textile-Reinforced Materials. Germany, 2001.
29 Chen X, Zhang Y, Xie J, et al. Robotics and Computer-Integrated Manufacturing, 2018, 52, 24.
30 Chen X, Chen L, Zhang C, et al. Composites Part A: Applied Science and Manufacturing, 2016, 85, 12.
31 Liu S H, Li C J, Ji A L. Aeronautical Manufacturing Technology, 2017(14), 88 (in Chinese).
刘苏骅,李崇俊,嵇阿琳. 航空制造技术, 2017(14), 88.
32 Dell'Anno G, Partridge I, Cartié D, et al. International Journal of Structural Integrity, 2012, 3(1), 22.
33 Lombetti D M, Anno G D, Skordos A A, et al. In: The 19th International Conference on Composite Materials. Monlier, Canada, 2013.
34 Tan G, Hartley J, Withers E, et al. In: Sampe Europe. Amiens, France, 2015.
35 Sun Y, Gao X, Meng Z, et al. Journal of the Textile Institute, 2013, 104(7), 745.
36 Xuan J, Li D, Jiang L. Composite Structures, 2019, 220, 602.
37 Rudov-Clark S, Mouritz A P, Lee L, et al. Composites Part A: Applied Science and Manufacturing, 2003, 34(10), 963.
38 Treiber J W G. Performance of tufted carbon fibre/epoxy composites. Ph.D. Thesis, Cranfield University, UK, 2011.
39 Lombetti D M, Skordos A A. Composite Structures, 2019, 209, 694.
40 Saboktakin A, Vu-Khanh T, Butun V, et al. FME Transaction, 2018, 46(3), 224.
41 Bortoluzzi D B, Gomes G F, Hirayama D, et al. The International Journal of Advanced Manufacturing Technology, 2019, 100(5-8), 1593.
42 Mcgarrigle C, Fernández D, Middendorf P, et al. Journal of Reinforced Plastics and Composites, 2020, 39, 249.
43 Mcgarrigle C, Wegrzyn M, Mcilhagger A, et al. AIP Conference Procee-dings, 2018(1), 60001.
44 Tan K T, Watanabe N, Iwahori Y. Journal of Reinforced Plastics and Composites, 2010, 30(2), 99.
45 Chen J P, Su J Z, Zhen Y Z,Fiber Reinforced Plastics/Composites,2013(Z2), 21 (in Chinese).
陈吉平,苏佳智,郑义珠. 玻璃钢/复合材料,2013(Z2), 21.
46 Liu Q, Zhao Y, Duan Y X, et.al. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(9), 1267 (in Chinese).
刘千,肇研,段跃新,等. 北京航空航天大学学报, 2012, 38(9), 1267.
47 Yang L Y, Gong J Q. Journal of Nanjing University of Aeronautics & Astronautics,2017(S1),51 (in Chinese).
杨龙英,龚家谦. 南京航空航天大学学报, 2017(S1), 51.
48 Delll'Anno G. Effect of tufting on the mechanical behaviour of carbon fabric/epoxy composites. Ph.D. Thesis, Cranfield University, UK, 2007.
49 Thompson A J, Said B E, Belnoue J P, et al. Composites Science and Technology, 2018, 168, 104.
50 Gereke T, Cherif C. Composite Structures, 2019, 209, 60.
51 Mouritz A P, Cox B N. Composites Part A: Applied Science and Manufacturing, 2010, 41(6), 709.
52 Gu B H, Sun B Z. Design of textile composites, Donghua University Press, 2018 (in Chinese).
顾伯洪,孙宝忠. 纺织复合材料设计, 东华大学出版社, 2018.
53 Chou T W. Microstructural design of fiber composite, Cambridge University Press,1992.
54 Jing M L. Fabric structure and design, Chinese Textile Press, 2014 (in Chinese).
荆妙蕾. 织物结构与设计, 中国纺织出版社, 2014.
55 Shen H, Yang Y, Wang P, et al. Materials Research Express, 2020, 7(9), 095510.
56 Guzmán-Maldonado E, Wang P, Hamila N, et al. Composite Structures, 2018, 203(1), 213.
57 Wang P, Legrand X, Soulat D, et al. In: 21st International Conference on Composite Materials. Xi'an, China, 2017.
58 Shen H, Wang P, Legrand X. Composites Part A: Applied Science and Manufacturing, 2020, 141, 106196.
59 He H, Himmel N. Composites Science and Technology, 2011, 71(5), 569.
60 Yang J,Wu N, Li S, et.al. Tribology, 2019, 39(1), 90 (in Chinese).
杨洁,吴宁,李帅,等. 摩擦学学报, 2019, 39(1), 90.
63 Green S D, Long A C, Said B S F E, et al. Composite Structures, 2014, 108, 747.
62 Colin De Verdiere M, Pickett A A, Skordos A A, et al. In: ECCOMAS Thematic Conference on Mechanical Response of Composites. Porto, Portugal, 2007, pp. 12.
63 Blok L G, Kratz J, Lukaszewicz D, et al. Composite Structures, 2017, 161, 15.
64 Saboktakin A, Ghasemi A, Mohammadi A H. Journal of Metals, Materials and Minerals, 2019(1), 31.
65 Dell Anno G, Cartié D D, Partridge I K, et al. Composites Part A: Applied Science and Manufacturing, 2007, 38(11), 2366.
66 Colindeverdiere M, Pickett A, Skordos A, et al. Composites Science and Technology, 2009, 69(2), 131.
67 Dhanapal K, Sivaraman V, Gaddikeri K, et al. In: ISAMPE National Conference on Composite Structures (INCCOM-XI).Coimbatore,2012,pp.47.
68 Masa S K, Mallya A B, Dhanapal K, et al. Journal of Materials Enginee-ring and Performance, 2015, 24(4), 1581.
69 Yang L Y. Fiber Reinforced Plastics/Composites, 2018(6), 99 (in Chinese).
杨龙英. 玻璃钢/复合材料, 2018(6), 99.
70 Yang L Y, Gong J Q, Huang D M. Composites Science and Engineering, 2020(1), 52 (in Chinese).
杨龙英,龚家谦,黄当明. 复合材料科学与工程, 2020(1), 52.
71 Saboktakin A, Shahrouz M, Vu-Khanh T, et al. Journal of Harbin Institute of Technology (New Series), 2019, 26(3), 7.
72 Osmiani C, Mohamed G, Treiber J W G, et al. Composites Part A: Applied Science and Manufacturing, 2016, 91, 409.
73 Jamie W. Hartley J K C W, Aboura Z. Composites Part B: Engineering, 2016, 112, 49.
74 Henao A, Carrera M, Miravete A, et al. Composite Structures, 2010, 92(9), 2052.
75 Hartley J, Tse G, Kratz J, et al. In: ECCM17-17th European Conference on Composite Materials. Munich, Germany, 2016, pp. 1.
76 Hartley J, Ward C. In: 32nd Technical Conference of the American Society of Composites. West Lafayette, Indiana, 2017, pp. 2260.
77 Moreland J. In: Proceedings of the 20th International Conference on Composite Materials (ICCM20). Copenhagen, 2015.
78 Cheng X Q, Li Z N, Zhao L. Advances in Mechaincs, 2009, 39(1), 89 (in Chinese).
程小全,郦正能,赵龙. 力学进展. 2009, 39(1), 89.
79 Abbasi S, Ladani R B, Wang C H, et al. Composites Science and Techno-logy, 2020, 198, 108301.
80 Brunner A J, Blackman B R K, Davies P. Engineering Fracture Mecha-nics, 2008, 75(9), 2779.
81 Colin De Verdiere M, Skordos A A, Walton A C, etal. Engineering Fracture Mechanics, 2012, 96, 1.
82 Tan K T, Watanabe N, Iwahori Y. Composites Part A: Applied Science and Manufacturing, 2010, 41(12), 1857.
83 Verma K K, Viswamurthy S R, Gaddikeri K M, et al. Composite Structures, 2021, 261, 113272.
84 Colindeverdiere M, Pickett A, Skordos A, et al. Composites Science and Technology, 2009, 69(2), 131.
85 Ranz D, Cuartero J, Miravete A, et al. Composite Structures, 2017, 164, 189.
86 Pappas G, Joncas S, Michaud V, et al. Composite Structures, 2018, 184, 924.
87 De Verdiere M C, Skordos A A, May M, et al. Engineering Fracture Mechanics, 2012, 96, 11.
88 Pappas G, Joncas S, Michaud V, et al. Composite Structures, 2017, 181, 379.
89 Wang C M. Materials Review, 2010, 24(S1), 204 (in Chinese).
王春敏. 材料导报. 2010, 24(S1), 204.
90 Deconinck P, Capelle J, Bouchart V, et al. Journal of Reinforced Plastics and Composites, 2014, 33(14), 1353.
91 Scarponi C, Perillo A M, Cutillo L, et al. Composites Part B: Enginee-ring, 2007, 38(2), 258.
92 Yoshimura A, Nakao T, Yashiro S, et al. Composites Part A: Applied Science and Manufacturing, 2008, 39(9), 1370.
93 Martins A T, Aboura Z, Harizi W, et al. Composite Structures, 2018, 184, 352.
94 Martins A T, Aboura Z, Harizi W, et al. Composite Structures, 2019, 210, 109.
95 Martins A T, Aboura Z, Harizi W, et al. Composite Structures, 2019, 209, 103.
96 Martins A. Analysis of damage mechanisms in composite structures reinforced by tufting. Ph.D. Thesis, Université de Technologie de Compiègne, France, 2019.
[1] 刘晓刚, 孙红, 刘林聪. 二维材料在摩擦机理和润滑应用方面的研究进展[J]. 材料导报, 2021, 35(z2): 33-37.
[2] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[3] 郭建业, 赵英民, 李文静, 杨洁颖, 王瑞杰, 苏力军. 耐高温二氧化硅气凝胶复合材料制备及其导热研究[J]. 材料导报, 2021, 35(z2): 90-93.
[4] 冯斯桐, 王林杰, 欧金法, 罗劭娟, 严凯, 吴传德. 钙钛矿量子点与金属有机框架复合材料的研究进展[J]. 材料导报, 2021, 35(z2): 298-305.
[5] 郑洋, 宿振宇, 张璇. 铝/镁异质金属搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(z2): 346-352.
[6] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[7] 高玉龙, 王松, 张联合, 台永丰. 轨道车辆复合材料层压板结构的超声检测方法研究[J]. 材料导报, 2021, 35(z2): 433-436.
[8] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[9] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[10] 戴宗妙, 彭雪峰, 刘喜宗, 吴恒. 铺层方式对碳纤维预浸料不同温度下压缩特性的影响[J]. 材料导报, 2021, 35(z2): 564-569.
[11] 杨俊, 何创创, 罗小芳. 短切玻纤含量对TiO2/PTFE复合材料性能的影响[J]. 材料导报, 2021, 35(z2): 570-572.
[12] 张奇, 张震东, 任杰. 正六边形玻璃纤维增强复合材料多胞结构准静态压缩试验研究[J]. 材料导报, 2021, 35(z2): 573-578.
[13] 杨康, 张子傲, 杨丽, 耿昊, 丁一宁. 泡沫夹芯厚度对碳纤维复合材料夹层板冲击性能的影响[J]. 材料导报, 2021, 35(z2): 579-582.
[14] 张雷, 庄毅, 李姗姗, 唐毓婧, 李静, 罗欣. 不同工况下车用复合材料板簧的动态疲劳测试研究[J]. 材料导报, 2021, 35(z2): 583-588.
[15] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed