Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23040056-10    https://doi.org/10.11896/cldb.23040056
  高分子与聚合物基复合材料 |
金属卤化物钙钛矿纳米晶体/聚合物复合材料的研究进展
孙元杰1, 李志刚1,2, 王艺1, 田波1, 李金凤1, 张楠1,2, 赵浚峰2, 张建伟1, 李拓1, 赵弘韬1,2,*
1 黑龙江省原子能研究院,哈尔滨 150081
2 哈尔滨工程大学核科学与技术学院,哈尔滨 150006
Research Progress of Metal Halide Perovskite Nanocrystalline/Polymer Composites
SUN Yuanjie1, LI Zhigang1,2, WANG Yi1, TIAN Bo1, LI Jinfeng1, ZHANG Nan1,2, ZHAO Junfeng2, ZHANG Jianwei1, LI Tuo1, ZHAO Hongtao1,2,*
1 Heilongjiang Institute of Atomic Energy, Harbin 150081, China
2 School of Nuclear Science and Technology, Harbin Engineering University, Harbin 150006, China
下载:  全 文 ( PDF ) ( 41482KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属卤化物钙钛矿纳米晶体因其独特的光电特性,在光伏和光电等领域展现了巨大的应用前景,受到广泛的研究关注。但钙钛矿纳米晶体本身的离子晶体性质使其在水、热等环境下不稳定,从而限制了其实际应用。金属卤化物钙钛矿纳米晶体可以与聚合物结合形成纳米复合材料,具有许多优越的特性。聚合物基体可以赋予复合材料稳定性、可拉伸性和溶液加工性,而纳米晶体可保持其尺寸、形状和组成相关的光电特性。因此,这些纳米复合材料在下一代显示器、照明、传感、生物医学技术和能量转换等领域具有巨大的潜力。本文总结了金属卤化物钙钛矿纳米晶/聚合物纳米复合材料的最新研究进展。首先,讨论了制备金属卤化物钙钛矿纳米晶体/聚合物复合材料的各种合成策略。其次,介绍了金属卤化物钙钛矿纳米晶体/聚合物复合材料在发光二极管、激光和闪烁体等领域的应用。最后,提出了该领域未来的研究方向和挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙元杰
李志刚
王艺
田波
李金凤
张楠
赵浚峰
张建伟
李拓
赵弘韬
关键词:  金属卤化物钙钛矿  纳米晶体  聚合物  复合材料    
Abstract: Metal halide perovskite nanocrystals have attracted extensive research attention due to their unique photoelectric properties, showing great application prospects in photovoltaic and optoelectronic fields. However, due to the ionic crystal properties of perovskite nanocrystals, they are unstable in water, heat and other environments, which limits their practical application. Metal halide perovskite nanocrystals can be combined with polymers to form nanocomposites with many superior properties. Polymer matrix can endow composites with stability, stretchability and solution processability, while nanocrystals can maintain their size, shape and composition-related photoelectric properties. Therefore, these nanocomposites have great potential in the fields of next-generation displays, lighting, sensing, biomedical technology and energy conversion. This paper summarizes the latest research progress of metal halide perovskite nanocrystals/polymer nanocomposites. Firstly, various synthesis strategies for preparing perovskite nanocrystals/polymer composites are discussed. Secondly, the applications of metal halide perovskite nanocrystals/polymer composites in light-emitting diodes, lasers and scintillators are discussed. Finally, the future research directions and challenges in this field are proposed.
Key words:  metal halide perovskite    nanocrystalline    polymer    composites
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  O632  
  TB381  
基金资助: 黑龙江省自然科学基金(LH2022A024);黑龙江省科学院自然科学基金(YZ2022YZN01);黑龙江省属科研院所科研业务费(CZKYF2022-1-C032);黑龙江应用技术研发计划(GA20C011);黑龙江大学功能无机材料化学教育部重点实验室开放课题
通讯作者:  * 赵弘韬,博士,黑龙江省原子能研究院研究员、博士研究生导师。2010年博士毕业于哈尔滨工业大学。目前主要从事核技术应用及辐射防护研究。发表论文40余篇,包括Journal of Materials Chemistry A、 Journal of Chemical Physics、 Process Safety and Environmental Protection等。zhaohongtao2019@163.com   
作者简介:  孙元杰,2021年6月于济宁学院获得理学学士学位。现为黑龙江省科学院硕士研究生,在赵弘韬研究员的指导下开展柔性钙钛矿辐射探测材料的应用研究。
引用本文:    
孙元杰, 李志刚, 王艺, 田波, 李金凤, 张楠, 赵浚峰, 张建伟, 李拓, 赵弘韬. 金属卤化物钙钛矿纳米晶体/聚合物复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23040056-10.
SUN Yuanjie, LI Zhigang, WANG Yi, TIAN Bo, LI Jinfeng, ZHANG Nan, ZHAO Junfeng, ZHANG Jianwei, LI Tuo, ZHAO Hongtao. Research Progress of Metal Halide Perovskite Nanocrystalline/Polymer Composites. Materials Reports, 2024, 38(15): 23040056-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040056  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23040056
1 Xing G, Mathews N, Lim S S, et al. Nature Materials, 2014, 13(5), 476.
2 Zhou Y, Zhao Y. Energy & Environmental Science, 2019, 12(5), 1495.
3 Wei S, Yang Y, Kang X, et al. Chemical Communications (Camb), 2016, 52(45), 7265.
4 Wang S, Zhang Z, Tang Z, et al. Nano Energy, 2021, 82, 105712.
5 Tan Z K, Moghaddam R S, Lai M L, et al. Nature Nanotechnology, 2014, 9(9), 687.
6 Song J, Li J, Li X, et al. Advanced Materials, 2015, 27(44), 7162.
7 Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society, 2009, 131(17), 6050.
8 Xiong G, Jin Y, Deng K, et al. Journal of Materials Chemistry C, 2022, 10(34), 12316.
9 Lei L, Dong Q, Gundogdu K, et al. Advanced Functional Materials, 2021, 31(16), 2010144.
10 Qiu L, He S, Jiang Y, et al. Journal of Materials Chemistry A, 2021, 9(40), 22759.
11 Zhang D, Zhu Y, Zhang Q, et al. Nano Letters, 2022, 22(7), 3062.
12 Chen Q, Wu J, Ou X, et al. Nature, 2018, 561(7721), 88.
13 Su W, Yuan F. Matter, 2022, 5(8), 2450.
14 Zhang C, Chen J, Turyanska L, et al. Advanced Functional Materials, 2023, 33(3), 2211466.
15 Wu X, Guo Z, Zhu S, et al. Advanced Science, 2022, 9(17), 2200831.
16 Dey A, Ye J, De A, et al. ACS Nano, 2021, 15(7), 10775.
17 Chen J K, Zhang B B, Liu Q, et al. ACS Materials Letters, 2021, 3(11), 1541.
18 Huang H, Raith J, Kershaw S V, et al. Nature Communications, 2017, 8(1), 996.
19 O’Neill S W, Krauss T D. Journal of the American Chemical Society, 2022, 144(14), 6251.
20 Cha J, Kim M K, Lee W, et al. Chemical Engineering Journal, 2023, 451, 138920.
21 Hubley A, Bensalah-Ledoux A, Baguenard B, et al. Advanced Optical Materials, 2022, 10(19), 2200394.
22 Wang J X, Wang X, Yin J, et al. ACS Energy Letters, 2021, 7(1), 10.
23 Berhe T A, Su W N, Chen C H, et al. Energy & Environmental Science, 2016, 9(2), 323.
24 Zhang F, Zhong H, Chen C, et al. ACS Nano, 2015, 9(4), 4533.
25 Zhang J, Yang L, Zhong Y, et al. Physical Chemistry Chemical Physics, 2019, 21(21), 11175.
26 Yang D, Li X, Zeng H. Advanced Materials Interfaces, 2018, 5(8), 1701662.
27 Bella F, Griffini G, Correa-Baena J P, et al. Science, 2016, 354(6309), 203.
28 Yang M, Wang Q, Tong Y, et al. Applied Surface Science, 2022, 604, 154529.
29 Shankar H, Yu W W, Kang Y, et al. Scientific Reports, 2022, 12(1), 7848.
30 Chen T, Huang M, Ye Z, et al. Nano Research, 2021, 14, 1397.
31 Fan Y, Dong X, Guo Y, et al. Analytical Chemistry, 2022, 94(32), 11360.
32 Wang B, Peng J, Yang X, et al. Laser & Photonics Reviews, 2022, 16(7), 2100736.
33 Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nano Letters, 2015, 15(6), 3692.
34 Wei S, Zhu H, Zhang J, et al. Journal of Alloys and Compounds, 2019, 789, 209.
35 Xin Y, Zhao H, Zhang J. ACS Applied Materials & Interfaces, 2018, 10(5), 4971.
36 Park J, Jang H M, Kim S, et al. Trends in Chemistry, 2020, 2(9), 837.
37 Kazes M, Udayabhaskararao T, Dey S, et al. Accounts of Chemical Research, 2021, 54(6), 1409.
38 Zhou J, Fang F, Chen W, et al. Journal of Materials Chemistry C, 2021, 9(41), 14740.
39 Jin X, Ma K, Gao H. Journal of the American Chemical Society, 2022, 144(44), 20411.
40 Zhou Q, Bai Z, Lu W G, et al. Advanced Materials, 2016, 28(41), 9163.
41 Chen J, Huang X, Xu Z, et al. ACS Applied Materials & Interfaces, 2022, 14(29), 33703.
42 Liang Z B, Chen X, Liao X J, et al. Journal of Materials Chemistry C, 2022, 10(35), 12644.
43 Wang Y, He J, Chen H, et al. Advanced Materials, 2016, 28(48), 10710.
44 Erman B, Flory P. Macromolecules, 1986, 19(9), 2342.
45 He J, He Z, Towers A, et al. Nanoscale Advances, 2020, 2(5), 2034.
46 Wang Z, Fu R, Li F, et al. Advanced Functional Materials, 2021, 31(22), 2010009.
47 Dirin D N, Protesescu L, Trummer D, et al. Nano Letters, 2016, 16(9), 5866.
48 Cha W, Kim H J, Lee S, et al. Journal of Materials Chemistry C, 2017, 5(27), 6667.
49 Ma K, Du X Y, Zhang Y W, et al. Journal of Materials Chemistry C, 2017, 5(36), 9398.
50 Tang X, Wen X, Yang F. Nanoscale, 2022, 14(47), 17641.
51 Dong T, Zhao J, Li G, et al. ACS Applied Materials & Interfaces, 2021, 13(33), 39748.
52 Geng Y, Guo J, Ling S D, et al. Science China Materials, 2022, 65(10), 2746.
53 Zhang Z, Liu Y, Geng C, et al. Nanoscale, 2019, 11(40), 18790.
54 Hintermayr V A, Lampe C, Löw M, et al. Nano Letters, 2019, 19(8), 4928.
55 Liu Y, Chen T, Jin Z, et al. Nature Communications, 2022, 13(1), 1338.
56 Xu L, Meng Y, Xu C, et al. RSC Advances, 2018, 8(64), 36910.
57 Li D, Liu Y, Shi S, et al. Journal of Materials Chemistry C, 2021, 9(8), 2873.
58 Li X, Wen Z, Ding S, et al. Advanced Optical Materials, 2020, 8(13), 2000232.
59 Xue Q, Lampe C, Naujoks T, et al. Advanced Optical Materials, 2022, 10(14), 2102791.
60 Dujardin C, Auffray E, Bourret-Courchesne E, et al. IEEE Transactions on Nuclear Science, 2018, 65(8), 1977.
61 Li M, Wang Y, Yang L, et al. Angewandte Chemie, 2022, 134(37), e202208440.
62 Li H, Zhang Y, Zhou M, et al. ACS Energy Letters, 2022, 7(9), 2876.
63 Yu D, Wang P, Cao F, et al. Nature Communications, 2020, 11(1), 3395.
64 Zhang Y, Sun R, Ou X, et al. ACS Nano, 2019, 13(2), 2520.
65 Yang B, Yin L, Niu G, et al. Advanced Materials, 2019, 31(44), 1904711.
66 Li Y, Li Q L, Li Y, et al. Chemical Engineering Journal, 2023, 452, 139132.
67 Wang B, Li P, Zhou Y, et al. ACS Applied Nano Materials, 2022, 5(7), 9792.
[1] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[6] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[7] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[8] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[9] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[10] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[11] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[12] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[13] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[14] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[15] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed