Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22040039-6    https://doi.org/10.11896/cldb.22040039
  无机非金属及其复合材料 |
钢渣-偏高岭土基导电地聚合物的压敏性能研究
马彬, 黄启钦, 肖薇薇*, 黄小林
桂林电子科技大学建筑与交通工程学院,广西 桂林 541004
Piezoresistive Property of Steel Slag-Metakaolin Based Conductive Geopolymer
MA Bin, HUANG Qiqin, XIAO Weiwei*, HUANG Xiaolin
School of Architecture and Transportation Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
下载:  全 文 ( PDF ) ( 13326KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以钢渣和偏高岭土为主要原材料制备导电地聚合物,分析了钢渣掺量和养护温度对其抗压强度、电阻率、压敏性能以及微观结构的影响规律,并对其压敏性能进行了评估。结果表明:随着养护龄期的延长和养护温度的升高,试样抗压强度均有一定的增加,其中钢渣掺量为30%时试样抗压强度最高。在不同养护温度下,钢渣掺量越多,试样电阻率越低。养护温度的升高提升了试样早期物理力学性能,然而随着龄期延长,温度对试样电阻率的影响变弱。此外,在循环压缩荷载作用下,试样的最优应变灵敏度为40.35~50.31,远高于电阻应变片的灵敏度2。其中,当养护温度为40 ℃、钢渣掺量为30%时,试样电阻变化率(FCR)与循环压缩应力的相关系数R2高达0.953,试样压敏稳定性最优。由微观分析可知,当养护温度为60 ℃时,试样微观结构最为致密,稳定性最好,致使其应变灵敏度较低。在相同养护温度下,随着钢渣掺量的增加,试样致密性先增强后减弱,其中SS-30组最优,该结果与强度结果吻合较好。可见,钢渣-偏高岭土基导电地聚合物将是一种理想的压敏基体材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马彬
黄启钦
肖薇薇
黄小林
关键词:  导电地聚合物  压敏性能  抗压强度  钢渣掺量  养护温度    
Abstract: Conductive geopolymer was prepared with steel slag and metakaolin as main raw material. Meanwhile the influence of steel slag mixing amount and curing temperature on compressive strength, electrical resistivity, piezoresistive property and microstructure were analyzed, and then piezoresistive property was evaluated. The results show that with the increase of curing period and curing temperature, compressive strength of specimen is all increased somewhat, among which the compressive strength is the highest when steel slag mixing amount is 30%. Another, at different curing temperatures, the more the steel slag is mixed, the lower the electrical resistivity of specimen. Increase of curing temperature improves early physical and mechanical properties of specimen. However, with the growth of curing period, influence of temperature on the electrical resistivity of specimen becomes weaker. In addition, under the stress of cyclic compression load, the optimal strain sensitivity of specimen is 40.35—50.31, which is much higher than that of the resistance strain sheet (strain sensitivity is 2). Among them, when curing temperature is 40 ℃ and steel slag mixing amount is 30%, the correlation coefficient R2 between FCR and cyclic compression stress is as high as 0.953, and the piezoresistive stability is optimal. At last, microscopic analysis shows that when curing temperature is 60 ℃, microstructure is the most compact and has the best stability, resulting in a low strain sensitivity. At the same curing temperature, with increase of steel slag mixing amount, the density of specimen is first enhanced and then weakened, and the SS-30 group is optimal, which is in good agreement with the strength results. Obviously, the steel slag-metakaolin based conductive geopolymer will be an ideal piezoresistive matrix material.
Key words:  conductive geopolymer    piezoresistive property    compressive strength    steel slag mixing amount    curing temperature
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TU528.41  
基金资助: 国家自然科学基金(12162010);广西科技基地和人才专项(AD19245143);广西自然科学基金(2021GXNSFAA220087)
通讯作者:  *肖薇薇,桂林电子科技大学建筑与交通工程学院工程师。2010年上海交通大学结构工程专业毕业,获得工学博士学位。目前主要从事混凝土结构、膜结构和工程项目管理的研究,在国内外学术期刊发表论文10余篇。   
作者简介:  马彬,桂林电子科技大学建筑与交通工程学院高级实验师、硕士研究生导师。2016年中南大学工程力学专业毕业,获得工学博士学位。目前主要从事建筑节能材料和计算力学的研究,在国内外学术期刊发表论文10余篇。
引用本文:    
马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
MA Bin, HUANG Qiqin, XIAO Weiwei, HUANG Xiaolin. Piezoresistive Property of Steel Slag-Metakaolin Based Conductive Geopolymer. Materials Reports, 2024, 38(6): 22040039-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040039  或          http://www.mater-rep.com/CN/Y2024/V38/I6/22040039
1 Zhao Y R, Guan H, Hou M L, et al. Journal of Functional Materials, 2023, 54(4), 4216(in Chinese).
赵燕茹, 关鹤, 侯明良, 等. 功能材料, 2023, 54(4), 4216.
2 Zhou H, Chen L D. China Concrete and Cement Products, 1992(4), 12 (in Chinese).
周浩, 陈隆道. 混凝土与水泥制品, 1992(4), 12.
3 Kong D Y, Zhang J Z, Ni T Y, et al. Journal of the Chinese Ceramic Society, 2009, 37(1), 151 (in Chinese).
孔德玉, 张俊芝, 倪彤元, 等. 硅酸盐学报, 2009, 37(1), 151.
4 Camacho-Ballesta C, Zornoza E, Garces P. Advances in Cement Research, 2015, 28(4), 1.
5 Donnini J, Bellezze T, Corinaldesi V. Journal of Building Engineering, 2018, 20, 8.
6 Du J, Tang C, Jia B, et al. Key Engineering Materials, 2016, 680, 361.
7 Bai Y H, Tu R, Chen W. Journal of Hubei University of Technology, 2018, 33(1), 79 (in Chinese).
白应华, 涂锐, 陈伟. 湖北工业大学学报, 2018, 33(1), 79.
8 Qian J S, Li C T, Tang Z Q, et al. Journal of Building Materials, 2005, 8(3), 233 (in Chinese).
钱觉时, 李长太, 唐祖全, 等. 建筑材料学报, 2005, 8(3), 233.
9 Huang X M, Rao J L, Du K. Mining Safety & Environmental Protection, 2023, 50(6), 92(in Chinese).
黄学满, 饶吉来, 杜凯. 矿业安全与环保, 2023, 50(6), 92.
10 Ma Y, Yang X, Hu J, et al. Composites Part B: Engineering, 2019, 177, 107367.
11 Li N, Shi C J, Zhang Z H. Composites Part B: Engineering, 2019, 171, 34.
12 Rovnaník P, Kusák I, Bayer P, et al. Cement and Concrete Research, 2019, 118, 84.
13 Liu W S, Guo Y J, Hu J, et al. Journal of the Chinese Ceramic Society, 2021, 49(7), 1510 (in Chinese).
刘卫森, 郭英健, 胡捷, 等. 硅酸盐学报, 2021, 49(7), 1510.
14 Zhao L J, Zhang F. Materials Reports, 2020, 34(S2), 01319 (in Chinese).
赵立杰, 张芳. 材料导报, 2020, 34(S2), 01319.
15 Li Y Y, Hu C R. Experimental design and data processing(3rd edition), Chemical Industry Press, China, 2017, pp.3(in Chinese).
李云雁, 胡传荣. 试验设计与数据处理(第三版), 化学工业出版社, 2017, pp.3.
16 Wu Z L, Zhu X Y, Deng Y F, et al. China Journal of Highway and Transport, 2017, 30(9), 18(in Chinese).
吴子龙, 朱向阳, 邓永锋, 等. 中国公路学报, 2017, 30(9), 18.
17 Zheng J R, Qin W Z, Zhang T. Journal of Hunan University(Natural Sciences), 2004, 31(4), 60 (in Chinese).
郑娟荣, 覃维祖, 张涛. 湖南大学学报(自然科学版), 2004, 31(4), 60.
18 Peng H, Li S L, Cai C S, et al. Bulletin of the Chinese Ceramic Society, 2014, 33(11), 2809 (in Chinese).
彭晖, 李树霖, 蔡春声, 等. 硅酸盐通报, 2014, 33(11), 2809.
19 Yip C K, Lucky G C, Deventer J S J. Cement and Concrete Research, 2005, 35(9), 1688.
20 Cai J M, Pan J L, Li X P, et al. Construction and Buiding Materials, 2020, 234, 117868.
21 Cao Y L, Xu J X, Jiang L H, et al. Acta Materiae Compositae Sinica, 2018, 35(4), 957 (in Chinese).
曹亚龙, 徐金霞, 蒋林华, 等. 复合材料学报, 2018, 35(4), 957.
22 Liu H, Sun M Q, Li J, et al. Journal of Functional Materials, 2015, 46(16), 16064 (in Chinese).
刘衡, 孙明清, 李俊, 等. 功能材料, 2015, 46(16), 16064.
23 Wang L N, Aslani F. Ceramics International, 2021, 47, 7864.
[1] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[2] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[3] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[4] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[5] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[6] 宋春鹏, 由爽, 纪洪广, 孙利辉. 相似材料抗压强度正交试验与材料强度影响系数研究[J]. 材料导报, 2023, 37(23): 22090218-6.
[7] 刘新宇, 刘惠, 王新杰, 朱平华, 陈春红, 周心磊. 氧化石墨烯改性地聚物再生混凝土的抗硫酸溶蚀性能研究[J]. 材料导报, 2023, 37(21): 22010212-6.
[8] 叶家元, 李国豪, 史迪, 任雪红, 吴春丽, 张洪滔, 张文生. 矿渣/偏高岭土复合前驱体原位转化沸石的影响因素研究[J]. 材料导报, 2023, 37(21): 22040092-8.
[9] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[10] 董伟, 付前旺, 申向东, 薛慧君, 王尧鸿, 李志强. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 21050176-6.
[11] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[12] 黄帅, 张文芹, 刘志超, 王发洲. 基于CO2驱动固结的镁渣基3D打印材料的制备与性能研究[J]. 材料导报, 2023, 37(19): 22050050-7.
[13] 周敏, 吴泽媚, 欧阳雪, 胡翔, 史才军. 组成及骨料特性对UHPC基体流动性和抗压强度的影响[J]. 材料导报, 2023, 37(18): 22060073-9.
[14] 陈汝琪, 张祖华, 史才军. 掺废陶瓷粉对碱激发矿渣早期反应、硬化体强度及收缩性能的影响[J]. 材料导报, 2023, 37(17): 22030249-8.
[15] 徐玲琳, 欧阳军, 杨肯, 徐名凤, 周健. 养护温度对矿渣硫铝酸盐水泥水化的影响机理[J]. 材料导报, 2023, 37(11): 21100065-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed