Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23090082-6    https://doi.org/10.11896/cldb.23090082
  无机非金属及其复合材料 |
电石渣对CO2拌和水泥浆性能及固碳效能的影响
闵前燊1, 辜涛1,2,*, 何波1, 魏仁杰1, 刘川北1, 张礼华1, 刘来宝1
1 西南科技大学材料与化学学院,四川 绵阳 621010
2 绿色建筑材料国家重点实验室,北京 100024
Effect of Carbide Slag Addition on Properties and Carbon Sequestration Efficiency of Fresh Cement Slurry Mixed with CO2
MIN Qianshen1,GU Tao1,2,*, HE Bo1, WEI Renjie1, LIU Chuanbei1, ZHANG Lihua1, LIU Laibao1
1 School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
2 State Key Laboratory of Green Building Materials, Beijing 100024, China
下载:  全 文 ( PDF ) ( 8477KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高CO2直接拌和水泥基材料的固碳效能,以电石渣作为增强固碳材料,研究了电石渣和CO2对新拌水泥净浆的流动度、凝结时间、抗压强度、固碳量和固碳效率等性能的影响。结果表明,电石渣掺入水泥浆体中会降低浆体流动度,加速浆体凝结,降低水泥石各个龄期的抗压强度。通入CO2会进一步降低浆体的流动度,可延长浆体的凝结时间,水泥石抗压强度也有所提高。电石渣的掺入能够提高CO2拌和水泥净浆的固碳量和固碳效率,当电石渣替代水泥用量为15%(质量分数),时固碳量最高且为6.95%,当电石渣掺量为10%时,固碳效率最佳,可达13.03%。研究结论旨在为建立低碳水泥基材料制备和电石渣资源化协同利用新途径提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闵前燊
辜涛
何波
魏仁杰
刘川北
张礼华
刘来宝
关键词:  电石渣  CO2拌和水泥浆  抗压强度  固碳效能    
Abstract: In order to improve the carbon sequestration efficiency of cement-based materials directly mixed with CO2, the effects of carbide slag and CO2 on the fluidity, setting time, compressive strength, carbon sequestration amount and carbon sequestration efficiency of cement paste is studied by adding carbide slag into fresh cement slurry as an enhanced carbon sequestration material. The results show that the addition of carbide slag can reduce the fluidity of the cement slurry, and accelerate the setting time of the slurry, and also reduce the strength of the cement mortar specimen in different curing ages. When CO2 is injected into the slurry, the fluidity of the slurry is further reduced but the setting time of the slurry is delayed and the compressive strength of cement is improved. When carbide slag is mixed with CO2, the carbon sequestration amount and carbon sequestration efficiency of cement paste can be improved. When the carbide slag content is 15% to cement, the carbon sequestration amount is the highest, which reaches 6.95%. When the carbide slag content is 10% to cement, the carbon sequestration efficiency is the hig-hest, which can reach 13.03%. The purpose of this work is to provide reference for the establishment of a new approach for the preparation of low-carbon cement-based materials and the collaborative utilization of carbide slag resources.
Key words:  carbide slag    fresh cement slurry mixed with CO2    compressive strength    carbon sequestration efficiency
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  X70  
基金资助: 绿色建筑材料国家重点实验室开放基金(2022GBM08);四川省自然科学基金青年项目(2023NSFSC0931);四川省重点研发项目(2023YFS0360);国家自然科学基金(52178254);西南科技大学自然科学基金(22zx7131)
通讯作者:  * 辜涛,西南科技大学材料与化学学院讲师(特聘副教授)、硕士研究生导师。目前主要从特种水泥基材料、固体废弃物建材化资源利用等方面的教学与研究工作。主持四川省自然科学基金青年基金、绿色建筑材料国家重点实验室开放基金、企业横向项目等8项,授权发明专利5项,发表学术论文10余篇,获省部级科技奖励4项。gutao2021@swust.edu.cn   
作者简介:  闵前燊,2022年6月毕业于西南科技大学,获得工学学士学位,现为西南科技大学材料与化学学院硕士研究生。目前主要研究领域为低碳水泥基材料。
引用本文:    
闵前燊, 辜涛, 何波, 魏仁杰, 刘川北, 张礼华, 刘来宝. 电石渣对CO2拌和水泥浆性能及固碳效能的影响[J]. 材料导报, 2024, 38(23): 23090082-6.
MIN Qianshen,GU Tao, HE Bo, WEI Renjie, LIU Chuanbei, ZHANG Lihua, LIU Laibao. Effect of Carbide Slag Addition on Properties and Carbon Sequestration Efficiency of Fresh Cement Slurry Mixed with CO2. Materials Reports, 2024, 38(23): 23090082-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090082  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23090082
1 Wu W G, Zhang H, Shi H X. China Concrete, 2022, 1, 19 (in Chinese).
吴文贵, 张红, 师海霞. 混凝土世界, 2022, 1, 19.
2 Schneider M. Cement and Concrete Research, 2019, 124, 105792.
3 Fairley P. Architectural Record, 2020, 3, 106.
4 Wagner J, Monkman S. How to Commercialize Chemical Technologies for a Sustainable Future, Wiley Online Library, US, 2021, pp.255.
5 https://www.carboncure.com/.
6 Ministry of Housing and Urban-Rural Development, RPC. Standard for carbon emission calculation, China Architecture & Building Press, 2019(in Chinese).
中华人民共和国住房和城乡建设部. 建筑碳排放计算标准, 中国建筑工业出版社, 2019.
7 Gao X, Yao X, Yang T, et al. Construction and Building Materials, 2021, 308, 125015.
8 Zhao L W, Zhu G Y, Li S P, et al. Clean Coal Technology, 2021, 27(3), 14 (in Chinese).
赵立文, 朱干宇, 李少鹏, 等. 洁净煤技术, 2021, 27(3), 14.
9 Yan k, Zhou K M. Environmental Science Survey, 2008(S1), 103 (in Chinese).
闫琨, 周康根. 环境科学导刊, 2008(S1), 103.
10 Shi S, Liu C W, Wu H K, et al. Materials Reports, 2021, 35(7), 7027 (in Chinese).
时松, 刘长武, 吴海宽, 等. 材料导报, 2021, 35(7), 7027.
11 Guo R N, Yi Z W, Wang T, et al. Chemical Industry and Engineering Progress, 2022, 41(5), 11 (in Chinese).
郭若楠, 易臻伟, 王涛, 等. 化工进展, 2022, 41(5), 11.
12 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. Methods for testing uniformity of concrete admixture. China Standard Press, 2012(in Chinese).
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 混凝土外加剂匀质性试验方法. 中国标准化出版社, 2012.
13 12General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. Test methods for water requirement of normal consistency, setting time and soundness of the portland cement. China Standard Press, 2011(in Chinese).
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 水泥标准稠度用水量、凝结时间、安定性检验方法. 中国标准化出版社, 2011.
14 Xiao J, He H, Wang X Z, et al. Journal of Guangxi University of Science and Technology, 2023, 34(1), 112 (in Chinese).
肖杰, 何浩, 王祥柱, 等. 广西科技大学学报, 2023, 34(1), 112.
15 Liu X Y. Research of the hydration and hardening mechanism of cement-based materials after absorbing CO2 in mixing stage. Master's Thesis, China University of Mining and Technology, China, 2019 (in Chinese).
刘翔宇. 新拌水泥基材料吸收CO2对其水化硬化作用机制研究. 硕士学位论文, 中国矿业大学, 2019.
16 Gao Y L, Meng H, Leng Z, et al. Journal of Civil and Environmental Engineering, 2023, 45(3), 99 (in Chinese).
高英力, 孟浩, 冷政, 等. 土木与环境工程学报, 2023, 45(3), 99.
17 Xu P F, Sun Y, Liao Y X, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(9), 2907 (in Chinese).
徐鹏飞, 孙艳, 廖宜顺, 等. 硅酸盐通报, 2017, 36(9), 2907.
18 Shen D, Ge K L. Guangdong Building Materials, 2022, 38(10), 10 (in Chinese).
申达, 葛凯莉. 广东建材, 2022, 38(10), 10.
19 Ren G H. Study on carbonation reaction of fly ash and carbide slag and the characteristics of the reaction products. Master's Thesis, Shanxi University, China, 2019 (in Chinese).
任国宏. 粉煤灰/电石渣碳酸化及其产物特性研究. 硕士学位论文, 山西大学, 2019.
20 Ren G H, Liao H Q, Gao Y, et al. Materials Reports, 2019, 33(21), 3556 (in Chinese).
任国宏, 廖洪强, 高宏宇, 等. 材料导报, 2019, 33(21), 3556.
21 Liu J C. Influence of Nano-CaCO3 on properties of cement-based materials and its application. Master's Thesis, Chongqing University, China, 2016 (in Chinese).
刘俊超. 纳米CaCO3对水泥基材料性能影响及应用研究. 硕士学位论文, 重庆大学, 2016.
22 Wei C C. Study on effect and mechanism of Nano-CaCO3 in cement-based materials. Master's Thesis, Harbin Institute of Technology, China, 2013 (in Chinese).
魏荟荟. 纳米CaCO3对水泥基材料的影响及作用机理研究. 硕士学位论文, 哈尔滨工业大学, 2013.
23 Qian K N. Study on Properties, mechanism and application of Nano-CaCO3 in cement-based materials. Ph.D. Thesis, Zhejiang University, China, 2011 (in Chinese).
钱匡亮. 纳米CaCO3对水泥基材料的作用、机理及应用研究. 博士学位论文, 浙江大学, 2011.
24 Wu Z W, Lian H Z. High performance concrete. Chian Railway Publishing House, 1999, pp.24 (in Chinese).
吴中伟, 廉惠珍. 高性能混凝土. 中国铁道出版社, 1999, pp.24.
25 Li X G, Liu M, Mao B G, et al. Materials Reports, 2012, 26(7), 141 (in Chinese).
李相国, 刘敏, 马保国, 等. 材料导报, 2012, 26(7), 141.
26 Wei T C, Cheng X W, Wang S Z. et al. Materials Reports, 2016, 30(S2), 415 (in Chinese).
韦庭丛, 程小伟, 王升正, 等. 材料导报, 2016, 30(S2), 415.
27 Liu L L. Research on CO2 absorption ability and the reverse action mechanism of fresh cement. Ph. D. Thesis, China University of Mining and Technology, China, 2021 (in Chinese).
刘丽丽. 新拌水泥浆体吸收CO2及其反向作用机制研究. 博士学位论文, 中国矿业大学, 2021.
28 Pu Y H, Yin J, Li W W, et al. Journal of Chengdu University (Natural science edition), 2019, 38(2), 206 (in Chinese).
蒲云辉, 尹杰, 李薇薇, 等. 成都大学学报(自然科学版), 2019, 38(2), 206.
29 Steinour H H. Journal of the American Concrete Institute, 1959, 30, 905.
[1] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[2] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[3] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[4] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[5] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[6] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[7] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[8] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[9] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[10] 侯圣举, 李树国, 何超, 陈扬, 但建明, 周阳, 李相国, 吕阳. 再生微粉-电石渣制备硅酸盐水泥熟料及其水化性能研究[J]. 材料导报, 2024, 38(22): 23120044-6.
[11] 韩瑞凯, 陈宇鑫, 张健, 李召峰, 王衍升. 养护温度对赤泥基路用胶凝材料性能及微观结构的影响[J]. 材料导报, 2024, 38(22): 24060144-8.
[12] 郭维超, 赵庆新, 邱永祥, 石雨轩, 王帅. 碱渣-电石渣激发混凝土的基本力学性能与应力-应变关系[J]. 材料导报, 2024, 38(17): 22070247-8.
[13] 范旭涵, 王炳楠, 汤世豪, 辛星, 裴妍. 磷酸镁水泥加固低液限粉土的pH和电导率响应与孔隙特征研究[J]. 材料导报, 2024, 38(16): 23080046-9.
[14] 梁宝瑞, 王长龙, 平浩岩, 刘治兵, 马锦涛, 郑永超, 荆牮霖, 齐洋, 翟玉新, 刘枫. 铅锌尾矿/电石渣基加气混凝土的组成及结构[J]. 材料导报, 2024, 38(14): 23040266-7.
[15] 马梦阳, 贺行洋, 熊光, 李欣懋, 龙勇, 王福龙. 二水磷石膏-电石渣-镍铁渣三元胶凝体系的性能与微观结构[J]. 材料导报, 2024, 38(13): 22080048-5.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed