Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22060128-11    https://doi.org/10.11896/cldb.22060128
  无机非金属及其复合材料 |
基于CT图像三维重建的高温下再生混凝土孔隙特征研究
都思哲1, 张淼2, 张玉1, Selyutina Nina3, Smirnov Ivan3, 马树娟1, 董晓强1, 刘元珍1,*
1 太原理工大学土木工程学院,太原 030024
2 Coronation Property Co.Pty Ltd/MN Builders,新南威尔士州 2620
3 圣彼得堡国立大学,圣彼得堡 190000
Study on Pore Characteristics of Recycled Aggregate Concrete at High Temperature Based on 3D Reconstruction of CT Images
DU Sizhe1, ZHANG Miao2, ZHANG Yu1, Selyutina Nina3, Smirnov Ivan3, MA Shujuan1, DONG Xiaoqiang1, LIU Yuanzhen1,*
1 College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 Coronation Property Co. Pty Ltd/MN Builders, New South Wales 2620, Australia
3 Saint Petersburg State University, St. Petersburg 190000, Russia
下载:  全 文 ( PDF ) ( 21773KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高温会导致混凝土微细观结构损伤劣化,进而导致混凝土力学性能下降。本工作利用计算机层析成像(CT)技术对高温后掺加玻化微珠的再生混凝土(Recycled aggregate concrete mixed with glazed hollow beads,GHB-RAC)试件孔隙结构特征进行识别,基于CT扫描与三维重构建模提取并分析了混凝土孔隙结构的特征参数,同时利用灰色关联理论探究孔隙结构特征参数对混凝土残余抗压强度的影响程度。研究结果表明,温度会影响GHB-RAC内部孔隙结构,内部孔隙孔径及表面积随温度升高而增大,温度的升高也会影响混凝土孔隙均匀性,加剧孔隙不均匀性分布;玻化微珠(Glazed hollow beads,GHB)对混凝土温度传导的阻碍作用明显,GHB的掺入改善了混凝土的孔隙结构,减弱了高温导致的孔隙畸化;孔隙尺寸、孔隙球体度及孔隙表面积与残余抗压强度的灰色关联度均在 0.55以上,表明孔隙结构参数与残余抗压强度关联性较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
都思哲
张淼
张玉
Selyutina Nina
Smirnov Ivan
马树娟
董晓强
刘元珍
关键词:  CT扫描  再生混凝土  孔隙结构  抗压强度  灰色关联度    
Abstract: High temperatures can lead to deterioration of concrete microstructure damage, which in turn leads to a decrease in concrete mechanical pro-perties. In this work, computerized tomography (CT) technology was used to identify the pore structure characteristics of recycled aggregate concrete mixed with glazed hollow beads (GHB-RAC) specimens after high temperature. The characteristic parameters of concrete pore structure were extracted and analyzed based on CT scanning and three-dimensional reconstruction modelling. And the gray correlation theory was applied to investigate the influence degree of the pore structure characteristic parameters on the residual comprehensive strength of concrete. The results show that the internal pore structure of GHB-RAC can be affected by temperature; the internal pore size and surface area increase with temperature; and the temperature increase affects the concrete pore homogeneity and intensifies the distribution of pore in-homogeneity. With the incorporation of GHB, the pore structure of concrete improved effectively and reduces the pore distortion caused by high temperature. The gray correlation between pore size, pore sphericity and residual compressive strength is above 0.55, which indicates a great correlation between pore structure and residual comprehensive strength.
Key words:  CT testing    recycled aggregate concrete    pore structure    compressive strength    grey correlation degree
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TU541  
基金资助: 国家自然科学基金(51808375;52078473;5201101735);Russian Foundation for Basic Research (21-51-53008);住建部科学技术计划项目(2021-K-046);山西省新兴产业领军人才项目(202014)
通讯作者:  *刘元珍,太原理工大学土木工程学院教授、博士研究生导师。1996年太原理工大学工民建专业本科毕业,2001年太原理工大学结构工程专业硕士毕业,2008年太原理工大学结构工程专业博士毕业。目前主要从事再生混凝土结构、装配式混凝土结构及其智能建造、绿色建筑技术、固废资源化利用等方面的研究工作。发表论文100余篇,授权节能材料及结构体系、装配式混凝土结构发明专利14项。 liuyuanzhen@tyut.edu.cn   
作者简介:  都思哲,2013年6月于中国地质大学(武汉)获得工学学士学位。现为太原理工大学土木工程学院博士研究生,在刘元珍教授的指导下进行研究。目前主要研究领域为混凝土结构材料。
引用本文:    
都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
DU Sizhe, ZHANG Miao, ZHANG Yu, Selyutina Nina, Smirnov Ivan, MA Shujuan, DONG Xiaoqiang, LIU Yuanzhen. Study on Pore Characteristics of Recycled Aggregate Concrete at High Temperature Based on 3D Reconstruction of CT Images. Materials Reports, 2024, 38(5): 22060128-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060128  或          http://www.mater-rep.com/CN/Y2024/V38/I5/22060128
1 Cui S, Liu P, Su J, et al. Construction and Building Materials, 2018, 174, 603.
2 Hay R, Dung N T, Lesimple A, et al. Cement and Concrete Composites, 2021, 118, 103955.
3 Kodur V, Dwaikat M. Journal of Structural Fire Engineering, 2010, 1(2), 73.
4 Ryu E, Kim H, Chun Y, et al. Engineering Structures, 2020, 207, 110165.
5 Sadineni S B, Madala S, Boehm R F. Renewable & Sustainable Energy Reviews, 2011, 15(8), 3617.
6 Tu J, Wang Y, Zhou M, et al. Journal of Building Engineering, 2021, 40, 102629.
7 Miao Y C, Zhang Y, Deng K Z, et al. Acta Materiae Compositae Sinica, 2022, 39(6), 2806(in Chinese).
苗艳春, 张玉, 邓克招, 等. 复合材料学报, 2022, 39(6), 2806.
8 Zhao L, Wang W, Li Z, et al. Material Research Innovations, 2016, 19, S5-929.
9 Jalilifar H, Sajedi F. Construction and Building Materials, 2020, 267, 121041.
10 Xiao J Z, Huang Y B. Journal of Building Materials, 2006, 9(3), 255(in Chinese).
肖建庄, 黄运标. 建筑材料学报, 2006, 9(3), 255.
11 Xu M, Wang T, Chen Z F. Journal of Building Structures, 2015, 36(2), 158(in Chinese).
徐明, 王韬, 陈忠范. 建筑结构学报, 2015, 36(2), 158.
12 Li W G, Luo Z Y, Tao Z. Construction and Building Materials, 2017, 146, 571.
13 Wan F X, Zhao P H, Lian H J. Concrete, 2017(1), 52(in Chinese).
万夫雄, 赵鹏辉, 连会杰. 混凝土, 2017(1), 52.
14 Wang W J, Zhao L, Liu Y Z, et al. Magazine of Concrete Research, 2014, 66(10), 492.
15 Guo Y D, Liu Y Z, Wang W J, et al. Journal of Building Engineering, 2020, 32, 101797.
16 Hao L, Liu Y Z, Wang W, et al. Construction and Building Materials, 2018, 189, 478.
17 Heap M J, Lavallee Y, Laumann A, et al. Construction and Building Materials, 2013, 42, 248.
18 Xiong H R, Xu J M, Liu Y Z, et al. Advances in Materials Science and Engineering, 2016, 2016, 1.
19 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. GB/T 50081-2019, 混凝土物理力学性能试验方法标准. 中国建筑工业出版社, 2019.
20 Flores-Ales V, Alducin-Ochoa J M, Martín-del-Río J J, et al. Journal of Building Engineering, 2020, 29, 101158.
21 Zhao D F, Gao H J, Jia P H. Journal of Vibration and Shock, 2018, 37(4), 240(in Chinese).
赵东拂, 高海静, 贾朋贺. 振动与冲击, 2018, 37(4), 240.
22 Ríos J D, Arenas C, Cifuentes H, et al. Environmental Progress and Sustainable Energy, 2020, 39(3), e13382.
23 Stepkowska E T, Blanes J M, Franco F, et al. Thermochimica Acta, 2004, 420(1-2), 79.
24 Liu Y, Ji H, Zhang J, et al. Materials Testing, 2016, 58(7-8), 669.
25 Kalifa P, Menneteau F D, Quenard D. Cement and Concrete Research, 2000, 30(12), 1915.
26 Yun G, Jiang J, Schutter G D, et al. Construction and Building Materials, 2014, 69, 253.
27 Rashad A M, Bai Y, Basheer P A M, et al. Cement of Concrete Research, 2012, 42(2), 333
28 Du S Z, Zhang Y, Zhang J, et al. Construction and Building Materials, 2022, 323, 126564.
29 Kong L, Ostadhassan M, Li C, et al. Journal of Materials Science, 2018, 53(7), 5063.
30 Liu S F, Yang Y J, Wu L F. Gray system theory and its applications, China Science Publishing & Media Ltd, China, 2014, pp.21(in Chinese).
刘思峰, 杨英杰, 吴利丰. 灰色系统理论及其应用, 科学出版社, 2014, pp.21.
[1] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[2] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[3] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[4] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[5] 李再久, 夏臣平, 刘明诏, 金青林. 骨组织工程镁基支架的制备研究进展[J]. 材料导报, 2024, 38(4): 22050324-11.
[6] 王家滨, 范一杰, 牛荻涛, 王宇, 张凯峰. 部分浸泡再生混凝土Mg2+-SO42--Cl-复合盐侵蚀耐久性损伤特征与机制[J]. 材料导报, 2024, 38(1): 22060026-13.
[7] 李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
[8] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[9] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[10] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[11] 宋春鹏, 由爽, 纪洪广, 孙利辉. 相似材料抗压强度正交试验与材料强度影响系数研究[J]. 材料导报, 2023, 37(23): 22090218-6.
[12] 冯春花, 崔卜文, 郭晖, 张文艳, 朱建平. 水泥浆-碳化协同增强再生混凝土骨料研究[J]. 材料导报, 2023, 37(21): 22060098-5.
[13] 刘新宇, 刘惠, 王新杰, 朱平华, 陈春红, 周心磊. 氧化石墨烯改性地聚物再生混凝土的抗硫酸溶蚀性能研究[J]. 材料导报, 2023, 37(21): 22010212-6.
[14] 叶家元, 李国豪, 史迪, 任雪红, 吴春丽, 张洪滔, 张文生. 矿渣/偏高岭土复合前驱体原位转化沸石的影响因素研究[J]. 材料导报, 2023, 37(21): 22040092-8.
[15] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed