Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23040079-8    https://doi.org/10.11896/cldb.23040079
  金属与金属基复合材料 |
基于自发漏磁效应的钢丝束多点断丝损伤检测研究
张洪1,2, 张宇洁1,2, 程呈3, 童凯1,2, 邱健1,2, 周建庭1,2,*
1 省部共建山区桥梁及隧道工程国家重点实验室,重庆 400074
2 重庆交通大学土木工程学院,重庆 400074
3 重庆物康科技有限公司,重庆 400074
Multi-point Wire Bundle Breakage Damage Detection Based on Self-magnetic Leakage Effect
ZHANG Hong1,2, ZHANG Yujie1,2, CHENG Cheng3, TONG Kai1,2, QIU Jian1,2, ZHOU Jianting1,2,*
1 State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing 400074, China
2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
3 Chongqing Wukang Technology Co., Ltd., Chongqing 400074, China
下载:  全 文 ( PDF ) ( 7875KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 斜拉索的完整性对斜拉桥的服役安全至关重要。针对斜拉索突出的断丝损伤问题,本工作利用37根钢丝排列组成平行钢丝束模拟拉索试件,设置了不同工况模拟拉索的断丝状态,分析漏磁信号曲线变化特征并构建了特征指标(Bsd)以定量评估拉索的断丝损伤程度。结果表明:不同断丝率下磁感应强度法向分量(Bz)曲线两极值间水平间距与断丝宽度呈良好的线性正相关,且极值间距的变化对断丝率的影响不敏感;磁感应强度切向分量(Bx)、Bz值在相同断丝宽度、不同断丝率条件下的增量比在相同断丝率、不同断丝宽度条件下的增量大,说明漏磁信号受断丝率的影响更大;采用二次多项式可以较好地拟合断丝宽度、断丝率与特征指标之间的相关性,不同影响因素与指标的拟合优度均大于0.95;随断丝宽度和断丝率的增加,拟合曲线与曲面的斜率都逐渐减小;通过特征指标在不同影响因素下的增量分析,验证了断丝率对漏磁信号的影响大于断丝宽度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张洪
张宇洁
程呈
童凯
邱健
周建庭
关键词:  斜拉索  断丝损伤  自发漏磁  无损检测  定量评估    
Abstract: The integrity of cable-staying is crucial to the service safety of cable-stayed bridges. To address the prominent wire breakage damage problem, this work used 37 wires arranged into parallel wire bundles to simulate cable-stayed specimens. Different working conditions were set up to simulate the wire breakage state, the changing characteristics of the leakage signal curves were analyzed and the characteristic index Bsd was constructed to quantitatively evaluate the wire breakage damage. The results showed that the two polar spacings of Bz curves at different wire breakage rates were well linearly and positively correlated with the wire breakage width, the change of polar spacing was insensitive to the wire breakage rate. The increments of the values of Bx and Bz at the same wire breakage width with different wire breakage rates were larger than those at the same wire breakage rate with different wire breakage widths, indicating the signal was more influenced by the wire breakage rate. The correlation between the wire breakage width, wire breakage rate and the index can be fitted better by using quadratic polynomial, and the goodness of fit of different influencing factors and the index is greater than 0.95. The slope of the fitted curves decreases gradually with the increase of the wire breakage width and the wire breakage rate. Through the analysis of the increment of the index under different factors, it is verified that the influence of the wire breakage rate on the signal is greater than that of the wire breakage width.
Key words:  stay cables    wire breakage damage    self-magnetic leakage    non-destructive testing    quantitative assessment
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TG115.2  
基金资助: 国家自然科学基金(52278291;U20A20314);重庆市自然科学基金(CSTB2022NSCQ-LZX0006; cstc2022ycjh-bgzxm0086; CSTB2022TIAD-KPX0205);重庆市研究生科研创新项目(CYS240447)
通讯作者:  * 周建庭,重庆交通大学教授、博士研究生导师。1993年重庆交通大学公路工程专业本科毕业,1996年重庆交通大学桥梁工程专业硕士毕业,2005年重庆大学光电工程学院仪器科学与技术专业博士毕业。目前主要从事大跨拱桥结构行为与性能控制、桥梁检测、评估与加固研究。发表学术论文400余篇,包括Corrosion Science、Engineering Structures、Measurement、Nondestructive Testing and Evaluation、Journal of Magnetism and Magnetic Materials、《中国公路学报》《土木工程学报》等。jtzhou@cqjtu.edu.cn   
作者简介:  张洪,重庆交通大学教授、博士研究生导师。2009年重庆交通大学通信工程专业本科毕业,2012年重庆交通大学计算机应用技术专业硕士毕业,2017年重庆交通大学桥梁与隧道工程专业博士毕业后留校工作至今。目前主要从事桥梁健康监测及无损检测研究。发表论文50余篇,包括Corrosion Science、Engineering Structures、Journal of Magnetism and Magnetic Materials、Measurement、Nondestructive Testing and Evaluation、《材料导报》《土木工程学报》《仪器仪表学报》等。
引用本文:    
张洪, 张宇洁, 程呈, 童凯, 邱健, 周建庭. 基于自发漏磁效应的钢丝束多点断丝损伤检测研究[J]. 材料导报, 2024, 38(15): 23040079-8.
ZHANG Hong, ZHANG Yujie, CHENG Cheng, TONG Kai, QIU Jian, ZHOU Jianting. Multi-point Wire Bundle Breakage Damage Detection Based on Self-magnetic Leakage Effect. Materials Reports, 2024, 38(15): 23040079-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040079  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23040079
1 Miao C Q, Zhuang M L, Dong B. Strength of Materials, 2019, 51(3), 646.
2 Li R, Miao C Q, Feng Z X, et al. Journal of Constructional Steel Research, 2021, 176, 106375.
3 Zhang H, Jiang H J, Xia R C, et al. Materials Reports, 2022, 36(13), 173(in Chinese).
张洪, 蒋合靖, 夏润川, 等.材料导报, 2022, 36(13), 173.
4 Zhou J T, Li Y, Zhang H, et al. Chongqing Jiaotong University (Natural Science Edition), 2021, 40(7), 74 (in Chinese).
周建庭, 黎娅, 张洪, 等. 重庆交通大学学报(自然科学版), 2021, 40(7), 74.
5 Meng Q L, Zhang Y, Wang H L, et al. Bridge Construction, 2023, 53(1), 63 (in Chinese).
孟庆领, 张云, 王海良, 等.桥梁建设, 2023, 53(1), 63.
6 Zhou J T, Xia Q W, Yang M, et al. Journal of Chongqing Jiaotong University (Natural Science Edition), 2022, 41(10), 93 (in Chinese).
周建庭, 夏乾文, 杨茂, 等.重庆交通大学学报(自然科学版), 2022, 41(10), 93.
7 Dubov A A. Metal Science & Heat Treatment, 1997, 39(9), 401.
8 Lu B B, Wang H D, Dong L H, et al. Materials Reports, 2021, 35(7), 7139 (in Chinese).
卢兵兵, 王海斗. 董立虹, 等.材料导报, 2021, 35(7), 7139.
9 Zhao Y Y, Zhou J T, Xia R C, et al. Journal of Shenzhen University (Science and Engineering), 2019, 36(3), 260(in Chinese).
赵亚宇, 周建庭, 夏润川, 等.深圳大学学报(理工版), 2019, 36(3), 260.
10 Zhang H, Qiu J, Xia R C, et al. Journal of Magnetism and Magnetic Materials, 2022, 549(4), 168998.
11 Qu Y H, Zhang H, Zhou J T, et al. Construction and Building Materials, 2022, 344(3), 128009.
12 Xia R C, Zhou J T, Zhang H, et al. Sensors (Basel, Switzerland), 2018, 18(5), 1396.
13 Pang C Y, Zhou J T, Zhao R Q, et al. Materials, 2019, 12(7), 1167.
14 Qu Y H, Zhang H, Zhao R Q, et al. Materials, 2019,12 (13), 2154.
15 Tong K, Zhou J T, Zhao R Q, et al. Measurement, 2022, 189(9), 110620.
16 Gong Y, Zhou J T, Zhao R Q, et al. Journal of Magnetism and Magnetic Materials, 2022, 562(2), 169784.
17 Xin Y R, Zhang Q W. Bridge Construction, 2019, 49(3), 51 (in Chinese).
辛亚荣, 张启伟.桥梁建设, 2019, 49(3), 51.
18 Wang W, Yi Q C, Su S Q, et al. China Journal of Highway and Transport, 2019, 32(9), 1 (in Chinese).
王威, 易庆春, 苏三庆, 等.中国公路学报, 2019, 32(9), 1.
19 Jiang S H, Sun H W. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(22), 141(in Chinese).
江胜华, 孙伟贺.农业工程学报, 2022, 38(22), 141.
20 Zhou J T, Yang W Q, Xia R C, et al. Journal of Jiangsu University (Natural Science Edition), 2019, 40(6), 713 (in Chinese).
周建庭, 杨文琦, 夏润川, 等.江苏大学学报(自然科学版), 2019, 40(6), 713.
21 Tong K, Zhou J T, Ma X T, et al. Journal of Magnetism and Magnetic Materials, 2023, 569(12), 170382.
[1] 李静, 张灵, 王昊, 陈犇, 陈东彬, 黄莹, 陈正. 碱激发矿渣混凝土密实性超声无损检测法及其影响因素[J]. 材料导报, 2024, 38(11): 22090243-7.
[2] 陈韩青, 徐志远, 屈仲毅, 曾辉, 朱长春. 蜂窝夹层结构无损检测方法研究综述[J]. 材料导报, 2024, 38(10): 22090208-15.
[3] 彭乐, 郑志军. 激光选区熔化成形金属件的缺陷类型及表征方法概述[J]. 材料导报, 2023, 37(8): 21050053-7.
[4] 何绪林, 叶勤燕, 罗坤, 郑兴平, 冉小龙, 廖成. 高精准度检测紧固件轴向预紧力的薄膜压电传感器的研究[J]. 材料导报, 2023, 37(7): 21080201-4.
[5] 温飞娟, 温奇飞, 龙樟, 蒲京辰, 邓荣. 基于超声红外热波技术的再制造零件裂纹检测研究现状[J]. 材料导报, 2023, 37(6): 21030195-8.
[6] 项赫, 姜亚明, 杨晨, 周艺颖. 基于双目视觉的纬编双轴向壳体复合材料纱线取向检测方法[J]. 材料导报, 2023, 37(14): 21110125-6.
[7] 李胤, 宋远佳, 刘春华. 基于热成像的CFRP损伤检测与演化规律研究综述[J]. 材料导报, 2022, 36(Z1): 22010161-9.
[8] 乔国斌, 乔宏霞, 路承功. 兰州地铁地下水环境中钢筋混凝土通电锈蚀机理研究[J]. 材料导报, 2022, 36(19): 21010008-6.
[9] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[10] 朱晔, 魏世丞, 梁义, 王玉江, 郭蕾, 刘文超. 可视化无损检测技术研究进展*[J]. 《材料导报》期刊社, 2017, 31(3): 63-69.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed