Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21080201-4    https://doi.org/10.11896/cldb.21080201
  无机非金属及其复合材料 |
高精准度检测紧固件轴向预紧力的薄膜压电传感器的研究
何绪林, 叶勤燕, 罗坤, 郑兴平, 冉小龙, 廖成*
中国工程物理研究院成都科学技术发展中心,成都 610000
Research on Thin Film Piezoelectric Transducer for High-accuracy Axial Pre-tightening Detection of Fastener
HE Xulin, YE Qinyan, LUO Kun, ZHENG Xingping, RAN Xiaolong, LIAO Cheng*
Chengdu Science and Technology Development Center, China Academy of Engineering Physics, Chengdu 610000,China
下载:  全 文 ( PDF ) ( 16450KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 结构健康监测受到业内的广泛重视,尤其是关键部位紧固件预紧力的精准检测和实施监测。压电传感器是实现超声波高精准度无损检测紧固件预紧力技术的核心。基于氧化锌(ZnO)压电薄膜研究了材料制备工艺及相关压电传感器的性能。测试分析了不同沉积功率下ZnO薄膜的断面形貌、表面粗糙度、晶体取向和压电响应性能,结果表明,沉积功率为250 W时ZnO薄膜具有最好的c轴取向择优生长,压电性能最强。成功在GH4169镍基高温合金螺栓端面生长了ZnO薄膜压电传感器,该传感器在100 V脉冲方波电压激励下,信号增益为30 dB时获得的超声波纵波第一次回波信号强度超过200,其工作频率为17.71 MHz。测力性能表征结果表明,在螺栓额定预紧力60%以上的情况下,该薄膜压电传感器的预紧力测量精准度可达±3%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何绪林
叶勤燕
罗坤
郑兴平
冉小龙
廖成
关键词:  压电薄膜  传感器  氧化锌(ZnO)  超声波无损检测  高精准度    
Abstract: The health monitoring of structural has received considerable attention in the industrial field, especially for accurate detection and monitoring of pre-tightening force of fastener at key parts. High performance piezoelectric transducer is the core component to realize high-accuracy and nondestructive pre-tightening detection of fastener with ultrasonic. In this work, the preparation process and related piezoelectric transducer pro-perties of zinc oxide (ZnO) piezoelectric thin films were studied in detail. The cross-sectional morphology, surface roughness, crystal orientation and piezoelectric response properties of ZnO films under different deposition power were characterized. The results showed the ZnO films under the deposition power of 250 W display a stronger preferential growth along c-axis orientation and better piezoelectric properties. ZnO-based thin film piezoelectric transducer was then successfully deposited onto the surface of GH4169 bolt. Under operating conditions of 100 V pulse square wave voltage and 30 dB signal gain, an amplitude exceeding 200 of the first ultrasonic longitudinal wave with frequency of 17.71 MHz was obtained for the ZnO piezoelectric transducer. When the bolt rated preload was more than 60%, a preload control accuracy of ±3% was achieved for the ZnO piezoelectric transducer.
Key words:  piezoelectric thin film    transducer    zinc oxide (ZnO)    ultrasonic nondestructive measurement    high accuracy
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TN384  
基金资助: 四川省科技厅项目(2019JDJQ0044;2020YFG0380)
通讯作者:  * 廖成,中国工程物理研究院成都科学技术发展中心特聘研究员、博士研究生导师。2006年于北京大学获得理学学士学位,2006—2011年于北京大学直博并获得工学博士学位,2011年毕业后进入中国工程物理研究院成都科学技术发展中心工作至今。主要从事光电薄膜器件、压电薄膜器件等方面的研究工作。发表SCI论文30余篇,授权专利30余项。cliao@pku.edu.cn   
作者简介:  何绪林,2009年6月于四川大学获得理学硕士学位,2012年6月于四川大学获得工学硕士学位。现为中国工程物理研究院成都科学技术发展中心高级工程师,从事功能薄膜材料与器件研究10余年。主要从事光电薄膜器件及压电薄膜器件的研究工作,目前获得授权发明专利10余项,发表SCI论文10余篇。
引用本文:    
何绪林, 叶勤燕, 罗坤, 郑兴平, 冉小龙, 廖成. 高精准度检测紧固件轴向预紧力的薄膜压电传感器的研究[J]. 材料导报, 2023, 37(7): 21080201-4.
HE Xulin, YE Qinyan, LUO Kun, ZHENG Xingping, RAN Xiaolong, LIAO Cheng. Research on Thin Film Piezoelectric Transducer for High-accuracy Axial Pre-tightening Detection of Fastener. Materials Reports, 2023, 37(7): 21080201-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080201  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21080201
1 Tang X Q. The research on bolt preload detection with multi-sensors. Master's Thesis, Zhejiang University of Technology, China, 2009 (in Chinese).
唐晓茜. 多传感器螺栓预紧检测方法研究.硕士学位论文, 浙江工业大学, 2009.
2 Zhang J. Research on the ultrasonic measurement technology of bolt tension based on the sono-elasticity principle. Master's Thesis, Zhejiang University, China, 2005 (in Chinese).
张俊. 基于声弹性原理的超声波螺栓紧固力测量技术研究. 硕士学位论文, 浙江大学, 2005.
3 Koshti A M. In:NESC NDE Face to Face Meeting. Michoud, LA, USA, 2015, pp. N150002989.
4 Xue Z F, Xing Z H, Wang H D, et al.Materials Reports A:Review Papers, 2017, 31(9), 122 (in Chinese).
薛子凡, 邢志国, 王海斗, 等. 材料导报:综述篇, 2017, 31(9), 122.
5 Niu D W. Preparation and characteristics of aluminum nitride thin film. Master's Thesis, Electronic Science and Technology University, China, 2017 (in Chinese).
牛东伟. AlN薄膜的制备与性能的研究. 硕士学位论文, 电子科技大学, 2017.
6 Wacogne B, Roe M P, Pattinson T J, et al. Applied Physics Letters, 1995, 67, 1674.
7 Zayera N K, Greef R, Rogers K, et al. Thin Solid Films, 1999, 352, 179.
8 Gokhale N, Parmar M, Rajanna K. In:3rd International Conference on Sensing Technology. Tainan, China, DOI:10.1109/ICSENST.2008.4757165.
9 Lakin K M, Wang J S. Applied Physics Letter, 1981, 38(3), 125.
10 Shen Z, Shih W Y, Shih W H, et al. Applied Physics Letter, 2006, 89, 023506.
11 Stubbs D D, Hunt W D,Lee S H, et al. Biosensors and Bioelectronics, 2002, 17, 471.
12 Yi J W, Shih W Y, Shih W H, et al. Journal of Applied Physics, 2002, 91, 1680.
13 Koskela J, Knuuttila J V, Makkonen T, et al. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, 48, 1517.
14 Park S H, Seo B C, Yoon G W, et al. Journal of Vacuum Science & Technology A, 2000, 18(5), 2431.
15 Viannie L R, Joshi S, Jayanth G R, et al. Sensors, 2012, 3(11), 1.
16 Shin K Y, Lee J S, Jang J, et al. Nano Energy, 2016, 22, 95.
17 Xu H X, Wang J L, Tang N, et al.Journal of Synthetic Crystals, 2009, 38(4), 880 (in Chinese).
许恒星, 王金良, 唐宁, 等.人工晶体学报, 2009, 38(4), 880.
18 Li J Y. Study on ZnO thin films ultrsonic transducer and related acons-tooptic devices.Ph.D. Thesis, Huazhong University of Sinence & Techno-logy, China, 2016 (in Chinese).
李金玉. ZnO薄膜超声换能器的研制及其声光器件研究. 博士学位论文, 华中科技大学, 2016.
19 Sun H M, Guo H. Journal of Functional Materials and Devices, 2008, 14(1), 258 (in Chinese).
孙宏明, 郭航. 功能材料与器件学报, 2008, 14(1), 258.
20 Zhou J, He X L, Wang W B, et al. IEEE Electron Device Letters, 2013, 34(10), 1319.
21 Zhou J, He X L, Jin H, et al. Optics and Precision Engineering, 2014, 22(2), 346.
22 Xiong S, Liu X D, Zhou J, et al. RSC Advances, 2020, 10(33), 19178.
23 Qin W W, Li T, Li Y T, et al. Applied Surface Science, 2016, 364, 670.
24 Liu B, Wang M Z, Chen M D, et al. ACS Applied Materials & Interfaces, 2019, 11(13), 12656.
25 Lin R H, Sun C M, You H, et al. Piezoelectrics & Acoustooptics, 2016, 38(6), 851 (in Chinese).
林荣辉, 孙翠敏, 尤晖, 等. 压电与声光, 2016, 38(6), 851.
26 Water W, Chu S Y. Materials Letters, 2002, 55(1-2), 67.
27 Cheng D L, Kao K S, Liang C H, et al. In:MATEC Web of Confe-rences. Auckland, New Zealand, 2017, pp.109.
28 Chen J J, Gao Y, Zeng F, et al. Applied Surface Science, 2004, 223(4), 318.
29 Zhang H L, Wang Z H, Huang H D, et al. Journal of Chinese Electron Microscopy Society, 2007, 26(1), 24.
30 Rodriguez B J, Gruverman A, Kingon A I, et al. Applied Physics Letters, 2002, 80(22), 4166.
[1] 李佳炜, 朱宏伟. 纳米材料在病毒检测中的应用研究进展[J]. 材料导报, 2023, 37(6): 21070090-11.
[2] 饶强海, 胡光煊, 张春媚, 杨鸿斌, 胡芳馨, 郭春显. 碳基材料构建电化学传感器实现苯二酚异构体的超敏精准检测:综述[J]. 材料导报, 2023, 37(5): 21080175-17.
[3] 饶春兴, 廖静文, 张雪慧, 武晓刚, 王艳芹, 陈维毅. 荧光水凝胶传感器及其传感响应机制研究进展[J]. 材料导报, 2023, 37(5): 21010130-8.
[4] 李良, 赵修贤, 王彬彬, 杨帅军, 聂永, 蒋绪川. 热致变色过渡金属配合物的变色机理及应用[J]. 材料导报, 2023, 37(4): 21010049-11.
[5] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[6] 刘凯伟, 刘琦牮, 李骏, 余映红, 卿新林. 基于FBG传感器和卷积神经网络的复合材料结构载荷识别研究[J]. 材料导报, 2023, 37(1): 21040290-7.
[7] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[8] 鲁猷栾, 穆新伟, 黄乐舒, 石震, 郑寅. 生物质炭材料:构建电化学传感器的理想修饰材料[J]. 材料导报, 2022, 36(6): 20070278-8.
[9] 刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
[10] 刘志伟, 童朝阳, 杜斌, 汪将, 刘帅. 四面体DNA核酸适体生物传感器构建方法及应用[J]. 材料导报, 2022, 36(24): 21050199-6.
[11] 王琼, 张伊, 唐浩, 胡云楚, 王文磊. 量子点在光电化学传感器中的研究进展[J]. 材料导报, 2022, 36(18): 20090134-8.
[12] 张梦梦, 刘梦, 杨丽丽, 葛邓腾. 液晶材料在智能光学器件中的应用研究进展[J]. 材料导报, 2022, 36(18): 21040006-9.
[13] 刘通, 诸葛祥群, 蓝嘉昕, 耿继业, 罗志虹, 李义兵, 罗鲲. 聚氨酯基压敏材料3D打印结合GaInSn液态金属导线制作柔性压力传感器的研究[J]. 材料导报, 2022, 36(15): 21030297-5.
[14] 雷鹏, 鲍艳. 基于MXene柔性压阻传感器研究进展[J]. 材料导报, 2022, 36(14): 20040214-11.
[15] 梁旭, 韩露, 雷雅京, 黎雯, 黄瑞滨, 陈荣生, 倪红卫, 詹玮婷. 基于氧化石墨烯/ZnO纳米阵列的无酶葡萄糖传感器[J]. 材料导报, 2022, 36(13): 21010061-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed