Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 20090134-8    https://doi.org/10.11896/cldb.20090134
  无机非金属及其复合材料 |
量子点在光电化学传感器中的研究进展
王琼1,2,*, 张伊1, 唐浩2, 胡云楚1, 王文磊1
1 中南林业科技大学理学院,长沙 410004
2 湖南师范大学化学化工学院,化学生物学及中药分析教育部重点实验室,长沙 410081
Recent Progress of Quantum Dots in Photoelectrochemical Sensors
WANG Qiong1,2,*, ZHANG Yi1, TANG Hao2, HU Yunchu1, WANG Wenlei1
1 College of Science, Central South University of Forestry and Technology, Changsha 410004, China
2 Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
下载:  全 文 ( PDF ) ( 3410KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 量子点作为一种新兴的光电活性材料,因其特殊的光电效应和稳定性,既可以实现光能与电能的转化,提高检测的灵敏度,又能在外加电压0 V左右产生光电流,适合生物分子检测,为光电化学传感领域的发展带来了新的契机。
然而,量子点在光电传感分析中的研究仍处于早期阶段,理论研究和实际应用上还有一些亟待解决的问题,如光电响应机理不够明确、电化学发光强度较低、光电流变化影响因素较多,需要大量系统而全面的研究揭示量子点光电转化的内在机制;另外,单一的量子点在受到光激发时产生的电子-空穴很容易发生复合,且光电转化效率较低。引入具有匹配能级的无机纳米材料或有机材料,提高量子点的光电性能和生物相容性,从而设计出一系列高灵敏度的光电化学传感器,目前已成为文献报道的焦点。
基于此,本文在大量文献的基础上,深入阐述了量子点用于光电化学传感器的原理及优势,详细归纳了常用的量子点光电复合材料及其构建传感界面的方法,全面综述了量子点在金属离子、小分子化合物及生物分析等光电化学传感检测中的应用,并对其发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王琼
张伊
唐浩
胡云楚
王文磊
关键词:  量子点  复合材料  光电效应  光电化学传感器    
Abstract: Quantum dots are a newly developed class of photoelectric active materials. Due to unique photoelectric effect and stability, quantum dots can not only realize the conversion of light energy into electric energy, which improve the sensitivity of electrochemical detection, but also generate photocurrent at the applied voltage of about 0 V, which achieves the friendly voltage for biomolecule detection. On these grounds, quantum dots provide a new opportunity for the development of photoelectrochemical sensors.
However, the research of quantum dots in photoelectric sensing analysis is just in its early stage. There are still some problems to be solved in theoretical research and practical application, such as unclear photoelectric response mechanism, low intensity of electrochemiluminescence and many influencing factors of photocurrent change. A large number of systematic and comprehensive studies are needed to reveal the intrinsic mechanism of quantum dot-based photoelectric conversion. In addition, electron-hole recombination is easy to occur when simple quantum dots are excited by light, and the photoelectric conversion efficiency is not high. To improve the photoelectric property and biocompatibility of quantum dots by introducing inorganic nanomaterials or organic materials with matching energy levels, designing a range of sensitive photoelectrochemical sensors have become the focus of current reports in the literature.
Therefore, based on extensive literature review, the principles and advantages of quantum dots used in photoelectrochemical sensors are described in detail in this paper. The commonly used photoelectric composite materials of quantum dots and the methods of constructing sensing interfaces are summarized. The applications of quantum dots in photoelectrochemical sensing detection of metal ions, small molecule compounds and biological analysis are comprehensively reviewed. Finally, current challenges and future perspectives in this field are also discussed to promote new developing directions.
Key words:  quantum dots    composite    photoelectric effect    photoelectrochemical sensor
收稿日期:  2022-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  O657.3  
  O649.3  
  O482.7  
基金资助: 国家自然科学基金(41977129);湖南省自然科学基金(2022JJ90020);湖南师范大学化学生物学及中药分析教育部重点实验室开放基金(KLCBTCMR18-07)
通讯作者:  *wangqiong@csuft.edu.cn   
作者简介:  王琼,中南林业科技大学高级实验师。2004年6月毕业于湖南工程学院化学化工学院,获得工学学士学位,2007年6月毕业于湖南师范大学化学化工学院,获得理学硕士学位,2016年继续攻读湖南师范大学化学专业博士。目前主要研究领域为功能纳米材料的可控制备及其传感应用。近年来,在该领域以第一作者或通信作者发表论文10余篇,包括Electrochimica Acta、 Colloids and Surfaces B: Biointerfaces、 Journal of Nanoscience and Nanotechnology、 Spectrochimica Acta Part A: Molecular and Biomolecular等。
引用本文:    
王琼, 张伊, 唐浩, 胡云楚, 王文磊. 量子点在光电化学传感器中的研究进展[J]. 材料导报, 2022, 36(18): 20090134-8.
WANG Qiong, ZHANG Yi, TANG Hao, HU Yunchu, WANG Wenlei. Recent Progress of Quantum Dots in Photoelectrochemical Sensors. Materials Reports, 2022, 36(18): 20090134-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090134  或          http://www.mater-rep.com/CN/Y2022/V36/I18/20090134
1 Goldman E R, Anderson G P, Tran P T,et al. Analytical Chemistry, 2002, 74(4), 841.
2 Hu X Y, Guo Q S, Liu Y Q,et al. Progress in Chemistry, 2017, 29(2-3), 300(in Chinese).
胡先运, 郭庆生, 刘玉乾, 等. 化学进展, 2017, 29(2-3), 300.
3 Zhao W W, Xu J J, Chen H Y.Analytical Chemistry, 2018, 90, 615.
4 Huang D. Photoelectrochemical sensors based on gold nano-particals/quantum dots composite. Master's Thesis, Soochow University, China, 2014(in Chinese).
黄道. 基于金纳米/量子点复合材料的光电化学传感器. 硕士学位论文, 苏州大学, 2014.
5 Willner I, Patolsky F, Wasserman J.Angewandte Chemie International Edition, 2001, 40, 1861.
6 Pardo-Yissar V, Katz E, Wasserman J,et al. Journal of the American Chemical Society, 2003, 125, 622.
7 Wang W J, Bao L, Lei J P,et al. Analytica Chimica Acta, 2012, 744(26), 33.
8 Hao Q, Wang P, Ma X Y, et al. Electrochemistry Communications, 2012, 21, 39.
9 Baş D, Boyac İ H. Electroanalysis, 2009, 21(16), 1829.
10 Baş D, Boyac İ H. Analytical and Bioanalytical Chemistry, 2011, 400, 703.
11 Shen Q M, Zhao X M, Zhou S W,et al. Journal of Physical Chemistry C, 2011, 115, 17958.
12 Fan G C, Han L, Zhang J R,et al. Analytical Chemistry, 2014, 86, 10877.
13 Fan G C, Zhu H, Du D,et al. Analytical Chemistry, 2016, 88(6), 3392.
14 Yan T, Wu T T, Wei S Y, et al. Biosensors and Bioelectronics, 2020, 148(15), 111739.
15 Liu Y, Yan K, Zhang J D. ACS Applied Materials & Interfaces, 2016, 8(42), 28255.
16 Zhu Y S, Tong X L, Song H Z, et al. Dalton Transactions, 2018, 47(30), 10057.
17 Yan K. DNA photoelectrochemical sensors based on CdSe quantum dots for the detection of environmental pollutants. Master's Thesis, Huazhong University of Science and Technology, China, 2016(in Chinese).
闫凯. 基于CdSe量子点的DNA光电化学传感器用于污染物监测研究. 硕士学位论文, 华中科技大学, 2016.
18 Gill R, Maya Z, Itamar W.Angewandte Chemie International Edition, 2008, 47(40), 7602.
19 Chen Y F, Zeev R.Analytical Chemistry, 2002, 74(19), 5132.
20 Wang G L, Yu P P, Xu J J,et al. Journal of Physical Chemistry C, 2009, 113(25), 11142.
21 Wang P. Quantum dots for novel photoelectrochemical biosensing strategies. Master's Thesis, Nanjing University, China, 2014(in Chinese).
王鹏. 基于量子点的光电化学生物传感新方法研究. 硕士学位论文, 南京大学, 2014.
22 Kang Q,Yang L, Chen Y,et al. Analytical Chemistry, 2010, 82(23), 9749.
23 Chen Q Y, Tan X C, Du F K, et al. Chinese Journal of Analytical Che-mistry, 2018, 46(2), 232(in Chinese).
陈全友, 谭学才, 杜方凯, 等. 分析化学, 2018, 46(2), 232.
24 Elliott C M. Nature Chemistry, 2011, 3, 188.
25 Semonin O E, Luther J M, Choi S,et al. Science, 2011, 334, 1530.
26 Luther J M, Jain P K, Ewers T,et al. Nature Materials, 2011, 10, 361.
27 Hwang E, Smolyaninov I I, Davis C C.Nano Letters, 2010, 10, 813.
28 Zhao W W, Yu P P, Xu J J,et al. Electrochemistry Communications, 2011, 13(5), 495.
29 Yan K, Wang R, Zhang J D. Biosensors and Bioelectronics, 2014, 53, 301.
30 Liang Y, Kong B, Zhu A,et al. Chemical Communications, 2012, 48, 245.
31 Xie S G. Highly sensitive photoelectrochemical immunosensors based on quantum dots and their nanocomposites. Master's Thesis, Dalian University of Technology, China, 2016(in Chinese).
解顺根. 基于量子点及其复合物的光电免疫分析新方法. 硕士学位论文, 大连理工大学, 2016.
32 Wang P, Shi B, Chen L H, et al. Materials Reports B:Research Papers, 2011, 25(11), 25(in Chinese).
王平, 史博, 程丽华, 等. 材料导报:研究篇, 2011, 25(11), 25.
33 Wang R Y, Ma H M, Zhang Y,et al. Biosensors and Bioelectronics, 2017, 96, 345.
34 Zhao M, Fan G C, Chen J J,et al. Analytical Chemistry, 2015, 87(24), 12340.
35 Tian J P, Zhao H M, Zhao H R,et al. Microchimica Acta, 2012, 179, 163.
36 Zhao X M, Zhou S W, Jiang L P,et al. Chemistry—A European Journal, 2012, 18, 4974.
37 Zhang X R, Li S G, Jin X,et al. Chemical Communications, 2011, 47, 4929.
38 Zhang X R, Xu Y P, Yang Y Q,et al. Chemistry—A European Journal, 2012, 18(51), 16411.
39 Wang L J, Gu W H, Sheng P T, et al. Sensors and Actuators B, 2019, 281 (15), 1088.
40 Wang E S, Yu L P, Lian S X, et al. Materials Reports A:Review Papers, 2019, 33(2), 777(in Chinese).
王恩胜, 余丽萍, 廉世勋, 等, 材料导报:综述篇, 2019, 33(2), 777.
41 Zhou X H. Preparation, photoelectrochemical properties and biosensing application of C/CSPBBR3/NIO/ITO photocathode. Master's Thesis, Hunan Normal University, China, 2020(in Chinese).
周小红. C/CSPBBR3/NIO/ITO光阴极的制备、光电化学性质及生物传感应用. 硕士学位论文, 湖南师范大学, 2020.
42 Tu W W, Dong Y T, Lei J P,et al. Analytical Chemistry, 2010, 82, 8711.
43 Shu J, Qiu Z L, Zhuang J Y,et al. ACS Applied Materials & Interfaces, 2015, 7(42), 3812.
44 Wang J, Hu C G, Hu S S. Journal of Analytical Science, 2015, 31(4), 567(in Chinese)
王娟, 胡成国, 胡胜水. 分析科学学报, 2015, 31(4), 567.
45 Xiao F, Lai Y J, Zhang N D, et al. Chinese Journal of Chemistry, 2012, 30, 1168.
46 Wang Y H, Zang D J, Ge S, et al. Electrochimica Acta, 2013, 107(30), 147.
47 Pei J Y, Wu Y P, Guo X Y,et al. ACS Omega, 2017, 2, 4341.
48 Zhao Y T, Shen Y F. Materials Reports A:Review Papers, 2017, 31(7), 138(in Chinese).
赵玉婷, 沈艳飞. 材料导报:综述篇, 2017, 31(7), 138.
49 Wang G L, Xu J J, Chen H Y.Nanoscale, 2010, 2, 1112.
50 Wang R N, Zu M, Yan S Y, et al. Sensors and Actuators B, 2018, 270, 270.
51 Wei X P, Liang S C, Huang W G, et al. Chinese Journal of Analytical Chemistry, 2016, 44(3), 348(in Chinese).
魏小平, 梁顺超, 黄文刚, 等. 分析化学, 2016, 44(3), 348.
52 Liu J, Liu Y, Wang W,et al. Science China Chemistry, 2019, 62, 1725.
53 Chen Q J, Xie Q L, Ma L P, et al. Journal of Functional Materials, 2018, 49(11), 11052(in Chinese).
陈秋菊, 谢奇龙, 马莉萍, 等. 功能材料, 2018, 49(11), 11052.
54 Vastarella W, Nicatr R.Talanta, 2005, 66, 627.
55 Sun G Q, Wang P P, Ge S G,et al. Biosensors and Bioelectronics, 2014, 56(15), 97.
56 Wang P P, Cao L, Chen Y,et al. ACS Applied Nano Materials, 2019, 2, 2204.
57 Sun J J, Zhu Y H, Yang X L, et al. China Particuology, 2009, 7(5), 347.
58 Tanne J, Schäfer D, Khalid W,et al. Analytical Chemistry, 2011, 83(20), 7778.
59 Zheng M, Cui Y, Li X Y, et al. Journal of Electroanalytical Chemistry, 2011, 656(1-2), 167.
60 Dai W,Zhang L, Zhao W W, et al. Analytical Chemistry, 2017, 89, 8070.
61 Chen X, Li D, Pan G, et al. Nanoscale, 2018, 10, 10505.
62 Yang X, Gao Y, Ji Z, et al. Analytical Chemistry, 2019, 91, 9356.
63 Wang H,Ye H L, Zhang B L, et al. Journal of Physical Chemistry C, 2018, 122, 20329.
64 Pang X, Qi J, Zhang Y, et al. Biosensors and Bioelectronics, 2016, 85, 142.
65 Li M J, Xiong C, Zheng Y N,et al. Analytical Chemistry, 2018, 90, 8211.
66 Wang G L, Xu J J, Chen H Y,et al. Biosensors and Bioelectronics, 2009, 25(4), 791.
67 Zhao W W, Ma Z Y, Yan D Y, et al. Analytical Chemistry, 2012, 84, 10518.
68 Xue T Y,Mei L P, Xu Y T, et al. Analytical Chemistry, 2019, 91, 3795.
69 Zhang X R, Liu M S, Mao Y N,et al. Biosensors and Bioelectronics, 2014, 59, 21.
70 Yang H M, Sun G Q, Zhang L N,et al. Sensors and Actuators B, 2016, 234, 658.
71 Fan G C, Zhu H, Du D,et al. Analytical Chemistry, 2016, 88(6), 3392.
72 Sun B, Dong J, Cui F,et al. Biosensors and Bioelectronics, 2019, 124-125, 1.
73 Hao H S, Hao S C, Hou H M, et al. Methods, 2019, 168, 94.
74 Yang H, Zhao X, Wang H, et al. Analyst, 2020,145, 165.
75 Yang H, Chen H, Cao L, et al. Talanta, 2020, 212, 120797.
76 Qian Z, Bai H J, Wang G L, et al. Biosensors and Bioelectronics, 2010, 25, 2045.
77 Luo H, Li X, Fang T T, et al. Materials Reports A:Review Papers, 2013, 27(10), 29(in Chinese).
罗慧, 李曦, 方婷婷, 等. 材料导报:综述篇, 2013, 27(10), 29.
78 Wang K W,Zhang R H, Sun N, et al. ACS Applied Materials & Interfaces, 2016, 8, 25834.
[1] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[2] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[3] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[4] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[5] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[6] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[7] 殷卫峰, 曾耀德, 杨中强, 张记明, 刘锐, 霍翠, 颜善银. 液晶高分子聚合物的类型、加工、应用综述[J]. 材料导报, 2022, 36(Z1): 21100214-5.
[8] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[9] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[10] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[11] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[12] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[13] 张文博, 石建丽, 马建中, 卫林峰, 范倩倩. 荧光碳量子点及其在防伪中的应用[J]. 材料导报, 2022, 36(7): 20110186-11.
[14] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[15] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed