Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 20090029-9    https://doi.org/10.11896/cldb.20090029
  无机非金属及其复合材料 |
二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展
李辉1, 朱刚1,*, 张建卫2, 康昆勇1, 杜官本3, 李园园1, 孙呵1
1 西南林业大学材料科学与工程学院,昆明 650224
2 同济大学物理科学与工程学院,上海 200092
3 西南林业大学西南山地森林资源保育与利用教育部重点实验室,昆明 650224
Recent Advancement of Novel Composites Based on Two-dimensional MXene-supported Nano-metals and Its Oxides
LI Hui1, ZHU Gang1,*, ZHANG Jianwei2, KANG Kunyong1, DU Guanben3, LI Yuanyuan1, SUN Ke1
1 College of Material Science and Engineering, Southwest Forestry University, Kunming 650224, China
2 College of Physics Science and Engineering, Tongji University, Shanghai 200092, China
3 Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming 650224, China
下载:  全 文 ( PDF ) ( 7826KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 MXene因其独特的类石墨烯二维层状结构,优异的电学、光学以及热力学性能,且拥有极大的比表面积、优异的亲水性和丰富可调的表面官能团,作为金属及其氧化物的新型载体为纳米复合材料的微观结构增强设计提供了有利条件,以更好地发挥界面效应。然而,二维MXene存在片层易自主堆叠、纳米金属及其氧化物在MXene载体中的几何分布和复合构型难以精准调控、复合材料的界面结合较弱等难题,导致不能最大化发挥不同组分之间的协同、耦合和多功能响应机制。尤其是对于具有显著本征功能特性(包括导电导热性能和力学性能)的MXene纳米载体,其优异性能难以充分体现,显著影响其复合材料的综合性能。针对上述问题,国内外对二维MXene作为载体负载纳米金属及其氧化物构筑高性能复合材料已开展了初步的探索,相关研究成果已被大量应用于能量存储、光催化、电磁屏蔽、微波吸收、超级电容器等前沿领域。为此,本文重点综述了二维MXene负载金属及其氧化物纳米复合材料的主要制备方法、微观结构和功能特性,归纳了其在能量存储、微波吸收等方面的具体应用及增强机理,指出了目前研究存在的短板,并展望了未来的研究方向及其应用前景,以期为新型MXene基纳米复合材料微观结构调控与性能的优化设计提供坚实的理论和实验基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李辉
朱刚
张建卫
康昆勇
杜官本
李园园
孙呵
关键词:  MXene  金属及其氧化物  纳米复合材料  结构性能  增强机理    
Abstract: MXene is a novel unique type of two-dimensional layered graphene-liked structural, which exhibits exceptional optical, electrical properties and thermodynamic properties, with large specific surface area, superior hydrophilicity and abundant controllable surface functional groups, as a novel carrier of nano-metals and its oxides, it provides favorable conditions for the microstructure enhancement design of nanocomposites to give better exert the interfacial effects.However, 2D MXene suffers from the difficulties of easy autonomous stacking of lamellae, difficulty in precisely regulating the geometric distribution and composite conformation of nano metals and their oxides in MXene carriers, and weak interfacial bonding of the composites, which leads to the failure to maximize the synergy, coupling and multifunctional response mechanisms between diffe-rent components. Especially for 2D MXene nano-carrier with significant intrinsic functional properties (including thermal and electrical conductivity and mechanical properties), its excellent properties are difficult to fully reflect, which significantly affects the comprehensive properties of the composites. For the above-mentioned issues, preliminary exploration has been carried out on construction of high-performance composites based on 2D MXene-supported nano-metals and their oxides in China and abroad. The related research results have already been applied practically to energy storage, photocatalysis, electromagnetic shielding, microwave absorption, supercapacitors and other frontier fields, and some impressive strides and progress have been made. Hence, this review paper presents the main preparation methods, microstructure and functional properties of 2D MXene supported metal and its oxide nanocomposites. The application and the enhanced mechanism in energy storage, microwave absorption, etc. are summarized. Moreover, some challenges are pointed out, and the future directions of research in this field and their application prospects are forecasted. It is expected to provide a solid theoretical and experimental foundation for the microstructure regulation and perfor-mance optimization design of the novel MXene-based nanocomposites.
Key words:  MXene    metals and its oxides    nanocomposites    structure and performance    enhancement mechanism
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TB34  
基金资助: 云南省自然科学基金(2017FB144)
通讯作者:  zhugangipm209@163.com   
作者简介:  李辉,2019年6月毕业于重庆文理学院,获得工学学士学位,现为西南林业大学材料科学与工程硕士研究生,在朱刚副研究员的指导下进行研究,目前主要研究领域为仿生功能复合材料。
朱刚,西南林业大学材料科学与工程学院副研究员,硕士研究生导师。2014年6月在四川大学材料学专业取得博士学位。主要从事仿生功能复合材料的研究工作。近年来,主持或参与国家自然科学基金青年项目、NSFC-云南联合基金项目、云南省自然科学基金面上项目、云南省教育厅协同创新基金、昆明市高层次人才引进项目等8项,发表学术论文30余篇,包括Material Letters、J. Ref. Met. Hard Mater、《稀有金属》和《材料导报》等,获国家发明专利5项。
引用本文:    
李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
LI Hui, ZHU Gang, ZHANG Jianwei, KANG Kunyong, DU Guanben, LI Yuanyuan, SUN Ke. Recent Advancement of Novel Composites Based on Two-dimensional MXene-supported Nano-metals and Its Oxides. Materials Reports, 2022, 36(9): 20090029-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090029  或          http://www.mater-rep.com/CN/Y2022/V36/I9/20090029
1 Shen C J, Wang L B, Zhang H, et al.Materials Reports A:Review Papers, 2016, 30(10), 148(in Chinese).
申长洁, 王李波, 张恒,等. 材料导报:综述篇, 2016, 30(10), 148.
2 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials, 2011, 23(37), 4248.
3 Naguib M, Mochalin V N, Barsoum M W, et al. Advanced Materials, 2014, 26(7), 992.
4 Barsoum M W,Radovic M. Annual Review of Materials Research, 2011, 41, 195.
5 Xie Y, Naguib M, Mochalin V N, et al. Journal of the American Chemical Society, 2014, 136(17), 6385.
6 Gan L Y, Huang D,Schwingenschlögl U. Journal of Materials Chemistry A, 2013, 1(43), 13672.
7 Enyashin A N,Ivanovskii A L.Journal of Physical Chemistry C, 2013, 117(26), 13637.
8 Dall′Agnese Y, Lukatskaya M R, Cook K M, et al. Electrochemistry Communications, 2014, 48, 118.
9 Lashgari H, Abolhassani M, Boochani A, et al. Solid State Communications, 2014, 195, 61.
10 Zha X H, Zhou J, Zhou Y, et al. Nanoscale, 2016, 8(11), 6110.
11 Han M, Maleski K, Shuck C E, et al. Journal of the American Chemical Society, 2020, 142(45), 19110.
12 Rasheed P A, Pandey R P, Gomez T, et al. Electrochemistry Communications, 2020, 119, 106811.
13 Soomro R A, Jawaid S, Kalawar N H, et al. Biosensors and Bioelectro-nics, 2020, 166, 112439.
14 Shahzad F, Zaidi S A,Naqvi R A.Critical Reviews in Analytical Chemi-stry, 2020, 1.
15 Morales-Garcia A, Calle-Vallejo F,Illas F. ACS Catalysis, 2020, 10, 13487.
16 Lim K R G, Handoko A D, Nemani S K, et al. ACS Nano, 2020, 14(9), 10834.
17 Zha X H, Luo K, Li Q, et al. EPL (Europhysics Letters), 2015, 111(2), 26007.
18 Hu M, Li Z, Li G, et al. Advanced Materials Technologies, 2017, 2(10), 1700143.
19 Zhong Y, Xia X, Shi F, et al. Advanced Science, 2016, 3(5), 1500286.
20 Azofra L M, Li N, MacFarlane D R, et al. Energy & Environmental Science, 2016, 9(8), 2545.
21 Li N, Chen X, Ong W J, et al. ACS Nano, 2017, 11(11), 10825.
22 Deng R, Chen B, Li H, et al. Applied Surface Science, 2019, 488, 921.
23 Wang Y, Gao X, Zhang L, et al. Applied Surface Science, 2019, 480, 830.
24 Zhang X, Wang H, Hu R, et al. Applied Surface Science, 2019, 484(AUG.1), 383.
25 Feng W, Luo H, Wang Y, et al. RSC Advances, 2018, 8(5), 2398.
26 Liu X, Wu J, He J, et al.Materials Letters, 2017, 205(oct.15), 261.
27 Liu Y T, Zhang P, Sun N, et al. Advanced Materials, 2018, 30(23), 1707334.
28 Peng C, Kuai Z, Zeng T, et al. Journal of Alloys and Compounds, 2019, 810, 151928.
29 Zou R, Quan H, Pan M, et al. Electrochimica Acta, 2018, 292, 31.
30 Zhuang Y, Liu Y,Meng X. Applied Surface Science, 2019, 496, 143647.
31 Zhang H, Man L, Cao J, et al. Ceramics International, 2018, 44, 19958.
32 Li Y, Deng X, Tian J, et al. Applied Materials Today, 2018, 13, 217.
33 Zhu L, Lv J, Yu X, et al. Applied Surface Science, 2020, 502(Feb.1), 144171.1.
34 Li N, Xie X, Lu H, et al. Ceramics International, 2019, 45(17), 22880.
35 Chen L, Ye X, Chen S, et al. Ceramics International, 2020, 46(16), 25895.
36 Ding M, Chen W, Xu H, et al. Journal of Hazardous Materials, 2019, 382, 121064.
37 Rajavel K, Hu Y, Zhu P, et al.Chemical Engineering Journal, 2020, 399, 125791.
38 Tan L, Lv J, Xu X, et al. Ceramics International, 2019, 45(5), 6597.
39 Mo R, Lei Z, Sun K, et al. Advanced Materials, 2014, 26(13), 2084.
40 Xin X, Zhou X, Wu J, et al. ACS Nano, 2012, 6(12), 11035.
41 Li W, Wang F, Liu Y, et al. Nano Letters, 2015, 15(3), 2186.
42 Ye R, Peng Z, Wang T, et al. ACS Nano, 2015, 9(9), 9244.
43 Chattopadhyay S, Maiti S, Das I, et al. Advanced Materials Interfaces, 2016, 3(23), 1600761.
44 Ye F, Zhao B, Ran R, et al. Chemistry-A European Journal, 2014, 20(14), 4055.
45 Halim J, Cook K M, Naguib M, et al. Applied Surface Science, 2016, 362, 406.
46 Fujihara S, Maeda T, Ohgi H, et al. Langmuir, 2004, 20(15), 6476.
47 Zhang X Y, Kang J L. Materials Reports, 2020, 34(Z2), 1030(in Chinese).
张曦元, 康建立.材料导报, 2020, 34(Z2), 1030.
48 Cheng J, Hu Z, Lv K, et al. Applied Catalysis B: Environmental, 2018, 232, 330.
49 Mu R, Ao Y, Wu T, et al. Journal of Hazardous Materials, 2020, 382, 121083.
50 Tiwari A, Mondal I, Ghosh S, et al. Physical Chemistry Chemical Phy-sics, 2016, 18(22), 15260.
51 Gao Y, Wang L, Zhou A, et al. Materials Letters, 2015, 150, 62.
52 Chen R, Wang P, Chen J, et al. Applied Surface Science, 2019, 473(APR.15), 11.
53 Ran J, Guo W, Wang H, et al. Advanced Materials, 2018, 30(25), 1800128.
54 Li Y, Yin Z, Ji G, et al. Applied Catalysis B: Environmental, 2019, 246, 12.
55 Low J, Zhang L, Tong T, et al. Journal of Catalysis, 2018, 361, 255.
56 Peng C, Yang X, Li Y, et al. ACS Applied Materials & Interfaces, 2016, 8(9), 6051.
57 Ran J, Gao G, Li F T, et al. Nature Communications, 2017, 8(1), 1.
58 Shi R,Chen Y. ChemCatChem, 2019, 11(9), 2270.
59 Sun X Y, Zhang X, Sun X, et al. Beilstein Journal of Nanotechnology, 2019, 10(1), 2116.
60 Dang A L, Fang C L, Zhao Z, et al. Journal of Materials Engineering, 2020, 48(4), 1(in Chinese).
党阿磊, 方成林, 赵曌,等. 材料工程, 2020, 48(4), 1.
61 Kumar K S, Choudhary N, Jung Y, et al. ACS Energy Letters, 2018, 3(2), 482.
62 Brousse T, Belanger D,Long J W. Journal of the Electrochemical Society, 2015, 162(5), A5185.
63 Chu J, Lu D, Wang X, et al. Journal of Alloys and Compounds, 2017, 702, 568.
64 Lei T, Guan M, Liu J, et al. Proceedings of the National Academy of Sciences, 2017, 114(20), 5107.
65 Irimia-Vladu M, Głowacki E D, Voss G, et al. Materials Today, 2012, 15(7-8), 340.
66 Zhang X, Li L, Fan E, et al. Chemical Society Reviews, 2018, 47(19), 7239.
67 Reck B K,Graedel T E. Science, 2012, 337(6095), 690.
68 Ordoñez J, Gago E J,Girard A. Renewable and Sustainable Energy Reviews, 2016, 60, 195.
69 Hu Y, Zhang T, Cheng F, et al.Angewandte Chemie, 2015, 127(14), 4412.
70 Yang Q, Huang Z, Li X, et al. ACS Nano, 2019, 13(7), 8275.
71 Shahzad F, Alhabeb M, Hatter C B, et al. Science, 2016, 353(6304), 1137.
72 Zhao B, Guo X, Zhao W, et al. ACS Applied Materials & Interfaces, 2016, 8(42), 28917.
73 Esfahani A N, Katbab A, Taeb A, et al. European Polymer Journal, 2017, 95, 520.
74 Yin X W, Cheng L F, Zhang L T, et al. International Materials Reviews, 2017, 62(3), 117.
75 Feng A, Ma M, Jia Z, et al. RSC Advances, 2019, 9(44), 25932.
76 Yin X, Kong L, Zhang L, et al. International Materials Reviews, 2014, 59(6), 326.
77 Song S, Liu J, Zhou C, et al. Journal of Alloys and Compounds, 2020, 843, 155713.
78 Zhao B, Shao G, Fan B, et al. Powder Technology, 2015, 270, 20.
79 Zhang Y, Huang Y, Zhang T, et al. Advanced Materials, 2015, 27(12), 2049.
80 Li X J, Fan G Y, Zeng C.International Journal of Hydrogen Energy, 2014, 39(27), 14927.
81 Zhao B, Liang L, Deng J, et al. CrystEngComm, 2017, 19(44), 6579.
82 He Y, Wang L B, Wang X L, et al. Journal of Synthetic Crystals, 2019, 48(5), 787(in Chinese).
何艳, 王李波, 王晓龙,等. 人工晶体学报, 2019, 48(5), 787.
83 Chang C, Huang X Y, Wang Q. Journal of Chongqing University of Technology (Natural Science), 2021, 35(12), 198(in Chinese).
常春, 黄心悦, 王琼.重庆理工大学学报(自然科学), 2021, 35(12), 198.
84 Zhang Z,Yates J T. Chemical Reviews, 2012, 112(10), 5520.
85 Zheng W, Yang L, Zhang P G, et al. Materials Reports A:Review Papers, 2018, 32(8), 2513(in Chinese).
郑伟, 杨莉, 张培根,等. 材料导报;综述篇, 2018, 32(8), 2513.
86 Qi X, Chen X, Peng S K, et al. Journal of Materials Engineering, 2019, 47(12), 10(in Chinese).
齐新, 陈翔, 彭思侃,等. 材料工程, 2019, 47(12), 10.
87 Jiang H, Wang Z, Yang Q, et al. Electrochimica Acta, 2018, 290, 695.
88 Xie X, Zhao M Q, Anasori B, et al. Nano Energy, 2016, 26, 513.
89 Tao M, Zhang Y, Zhan R, et al. Materials Letters, 2018, 230, 173.
90 Liu Z, Yu Q, Zhao Y, et al. Chemical Society Reviews, 2019, 48(1), 285.
91 Zhang R, Xue Z, Qin J, et al. Journal of Energy Chemistry, 2020, 50, 143.
92 Wang Y, Li Y, Qiu Z, et al. Journal of Materials Chemistry A, 2018, 6(24), 11189.
[1] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[2] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[3] 任书芳, 冯润妍, 程寿年, 曾俊菱, 宫雪, 王庆涛. 二维材料MXenes在传感领域的应用研究进展[J]. 材料导报, 2021, 35(5): 5075-5088.
[4] 孙丹, 李伟, 刘峥. 二维纳米材料MXene及其在锂离子电池中的应用研究进展[J]. 材料导报, 2021, 35(15): 15047-15055.
[5] 刘后宝, 傅仁利, 苏新清, 陈旭东, 吴彬勇. MXene材料的结构、性能及在电磁屏蔽领域的应用[J]. 材料导报, 2021, 35(13): 13067-13074.
[6] 杨兆哲, 孔振武, 吴国民, 王思群, 谢延军, 冯鑫浩. 3D打印聚合物纳米复合材料的研究进展[J]. 材料导报, 2021, 35(13): 13177-13185.
[7] 张美云, 罗晶晶, 杨斌, 刘国栋, 宋顺喜. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5): 5158-5166.
[8] 裴贺兵, 莫尊理, 郭瑞斌, 刘妮娟, 贾倩倩, 高琴琴. 石墨烯量子点:兼具高效和环保的新型超级电容器电极材料[J]. 材料导报, 2020, 34(21): 21093-21098.
[9] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[10] 章强, 刘洪利, 陈迎豪, 李兴建, 张宜恒. 纳米二氧化硅改性“Click”型侧链含氟聚氨酯的制备及在织物整理剂上的应用[J]. 材料导报, 2020, 34(14): 14218-14222.
[11] 郑孝源, 赵子龙, 任志英. 碳掺杂TiO2纳米管的制备和表征及在污水处理方面的应用[J]. 材料导报, 2019, 33(Z2): 113-115.
[12] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[13] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[14] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[15] 高党鸽, 王平平, 吕斌, 马建中. POSS/聚合物纳米复合材料制备方法的研究进展[J]. 材料导报, 2019, 33(3): 550-557.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed