Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 20090167-8    https://doi.org/10.11896/cldb.20090167
  高分子与聚合物基复合材料 |
微交联降粘型聚羧酸减水剂的合成及其在低水胶比体系中的作用
陈景1, 杨长辉1,*, 高育欣2, 杨文2, 王福涛2, 刘明2, 曾超2
1 重庆大学材料科学与工程学院,重庆 400045
2 中建西部建设建材科学研究院有限公司,成都 610000
Synthesis of Slightly Cross-linked Viscosity-reducing Polycarboxylate Superplasticizer and Its Influence on Cement Paste with Low Water-Binder Ratio
CHEN Jing1, YANG Changhui1,*, GAO Yuxin2, YANG Wen2, WANG Futao2, LIU Ming2, ZENG Chao2
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
2 China West Construction Academy of Building Materials Co.,Ltd., Chengdu 610000, China
下载:  全 文 ( PDF ) ( 5624KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 根据分子结构设计原理,以过硫酸铵为引发剂,以异戊烯醇聚氧乙烯醚、丙烯酸、马来酸酐、甲基丙烯酸二甲氨乙酯、不饱和酯和交联剂为主要原料,合成了一系列的微交联聚羧酸减水剂(WJN)。通过红外光谱仪、核磁氢谱、凝胶色谱仪和动态光散射对其结构进行表征,对比研究了梳型和微交联型聚羧酸减水剂的表面张力、分散性能、Marsh时间、流变行为、水膜层厚度、吸附行为以及新拌混凝土工作性能等。结果表明,当水胶比(w/c)为0.20时,相同流动度下,相比梳型(PCE-1)聚羧酸减水剂,WJN的掺量和Marsh时间分别降低20%和40%以上,浆体屈服应力和同转速下的剪切粘度分别降低45%和50%以上。混凝土实验表明,与PCE-1相比,掺入WJN后,混凝土掺量、倒坍时间和T500分别降低10%、65%和55%以上,即带有支化结构的聚羧酸减水剂具有优异的降粘性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈景
杨长辉
高育欣
杨文
王福涛
刘明
曾超
关键词:  孔隙液粘度  降粘型聚羧酸减水剂  水膜层厚度  分散性能  流变行为    
Abstract: Asuperplasticizer was synthesized by isobutyl alcohol polyoxyethylene ether, acrylic acid, maleic anhydride, 2-(dimethylamino)ethyl methacrylate, unsaturated ester, crosslinking agent and potassium persulfate according to the molecular structure design principle. The molecular structure of superplasticizer was determined by Fourier infrared spectroscopy,1H nuclear magnetic resonance, gel permeation chromatography and dynamic light scattering, respectively. The surface tension, dispersion performance, Marsh time, rheological behavior, water film thickness, adsorption behavior and application performance of fresh concrete of comb-type and micro-crosslinked superplasticizer were comparatively stu-died. Compared with the dosage and Marsh time of PCE-1, those of WJN were reduced by more than 20% and 40%, with the yield stress of the cement paste and the shear viscosity reduced by 45% and 50%, respectively, at the water-binder ratio (w/c) of 0.20 under the same fluidity. The concrete results show that the dosage, slump time and T500 were reduced by more than 10%, 65% and 55%, respectively. Therefore, the superplasticizer of branched structure has good viscosity-reducing effect.
Key words:  pore solution viscosity    viscosity-reducing polycarboxylate superplasticizer    water film thickness    dispersion performance    rheological behavior
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TU528.042  
基金资助: 国家自然科学基金(51878102);十三五国家重点研发计划(2017YFB0309905);重庆市自然科学基金(cstc2018jcyjAX0403)
通讯作者:  ychh@cqu.edu.cn   
作者简介:  陈景,重庆大学博士研究生,主要从事高性能混凝土、混凝土外加剂、混凝土耐久性及相关材料的研究与开发工程。
杨长辉,重庆大学教授,博士研究生导师,主要从事碱性胶凝材料及其混凝土、固体废渣处置和利用及建筑节能等方面的研究。先后主持和参加国家、省部级项目27项,横向科研项目50余项;发表学术论文100余篇,被SCI、EI和ISTP检索30余篇;主持和参编国家、行业和地方标准7部;获省部级科技进步奖3项。
引用本文:    
陈景, 杨长辉, 高育欣, 杨文, 王福涛, 刘明, 曾超. 微交联降粘型聚羧酸减水剂的合成及其在低水胶比体系中的作用[J]. 材料导报, 2022, 36(9): 20090167-8.
CHEN Jing, YANG Changhui, GAO Yuxin, YANG Wen, WANG Futao, LIU Ming, ZENG Chao. Synthesis of Slightly Cross-linked Viscosity-reducing Polycarboxylate Superplasticizer and Its Influence on Cement Paste with Low Water-Binder Ratio. Materials Reports, 2022, 36(9): 20090167-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090167  或          http://www.mater-rep.com/CN/Y2022/V36/I9/20090167
1 Wei S M, Guan Z J. Sichuan Building Materials, 2013, 39(4), 24(in Chinese).
魏素梅,关战军. 四川建材, 2013, 39(4), 24.
2 Xu Y B. Anhui Architecture, 2015(3), 174(in Chinese).
徐永波. 安徽建筑, 2015(3), 174.
3 Song Z B, Yao Y, Li T, et al. Journal of Building Materials, 2017, 20(4), 563(in Chinese).
宋作宝,姚燕,李婷,等. 建筑材料学报, 2017, 20(4), 563.
4 Qian J S, Yin D D, Yu D X, et al. Journal of Building Materials, 2019, 22(3), 378(in Chinese).
钱觉时,尹道道,郁东兴,等. 建筑材料学报, 2019, 22(3), 378.
5 Wang X P, Dong H B, Zhao G H. Commercial Concrete, 2019(5), 31(in Chinese).
王笑平,董海波,赵光赫,等. 商品混凝土, 2019(5), 31.
6 Ma Z X, Song P L, Zhou Z B, et al. Bulletin of Chinese Ceramic Society, 2018, 37(11), 3386(in Chinese).
马正先,宋沛霖,周在波,等. 硅酸盐通报, 2018, 37(11), 3386.
7 Lai G X, Fang Y H, Ke Y L, et al. New Building Materials, 2019, 46(6), 114(in Chinese).
赖广兴,方云辉,柯余良,等. 新型建筑材料, 2019, 46(6), 114.
8 Miao C W, Liu J Z. Construction Technology, 2013, 42(10), 1(in Chinese).
缪昌文,刘建忠. 施工技术, 2013, 42(10), 1.
9 Guo C M. Shanxi Architecture, 2009, 35(26), 211(in Chinese).
郭长民. 山西建筑, 2009, 35(26), 211.
10 Wang X G. Synthesis and application of composite micro-crosslinked polycarboxylate superplasticizer. Master's Thesis, University of Jinan, China, 2019(in Chinese).
王相国. 微交联聚羧酸高性能减水剂的制备与应用. 硕士学位论文,济南大学, 2019.
11 Li Z K. Study on performance optimization of polycarboxylate superplasticizer and compatibility between polycarboxylate superplasticizer and cementitious materials system. Ph.D. Thesis, Chongqing University, China, 2017(in Chinese).
李志坤. 聚羧酸减水剂性能优化及与胶凝材料的相容性研究. 博士学位论文,重庆大学, 2017.
12 Sun Y. Study on the synthesis and surface physical and chemical properties of hyperbranched polycarboxylate with side chains. Master's Thesis, University of Hainan, China, 2017(in Chinese).
孙妍. 侧链超支化型聚羧酸的合成及其表面物化性能研究.硕士学位论文,海南大学, 2017.
13 Song Z B, Preparation and application of multi-functional polycarboxylate superplasticizer based on molecular structure design. Ph.D. Thesis, China Building Materials Research Institute, China, 2016(in Chinese).
宋作宝. 基于分子结构设计的多功能型PCE的制备与应用. 博士学位论文,中国建筑材料科学研究总院, 2016.
14 Ma B, Qi H, Tan H, et al. Construction and Building Materials, 2020, 233, 117181.
15 Makul N. Sustainable Materials and Technologies, 2020, 25, 155.
16 Plank J, Sakai E, Miao C W, et al. Cement and Concrete Research, 2015, 78, 81.
17 Banfill P F G. Construction and Building Materials, 2011, 25(6), 2955.
18 Bai J J, Wang M, Shi C J, et al. Materials Reports B: Research Papers, 2020, 34(6), 172(in Chinese).
白静静,王敏,史才军,等. 材料导报:研究篇, 2020, 34(6), 172.
19?AXing Y B, Wang Y, Hu W K. Materials Reports, 2017(Z1), 402(in Chinese).
邢亚兵,王毅,胡凯伟. 材料导报, 2017(Z1), 402.
20 Qian S, Yao Y, Wang Z, et al. Construction and Building Materials, 2018, 169, 452.
21 Feneuil B, Pitois O, Roussel N. Cement and Concrete Research, 2017, 100, 32.
22 Zhao M, Zhang X, Zhang Y. Construction and Building Materials, 2016, 111, 571.
23 Ghoddousi P, Shirzadi Javid A A, Sobhani J. Construction and Building Materials, 2014, 53, 102.
24 Zhang Q, Liu J, Liu J, et al. Journal of Materials in Civil Engineering, 2016, 28(9), 4016085.
25 Lai N J, Wen X H, Zhao W S. Chemical Industry and Engineering Progress, 2020, 39(8), 3183(in Chinese).
赖南君,温小虎,赵文森,等. 化工进展, 2020, 39(8), 3183.
26 Bi Y G, Xu Z J, Jia X R, et al. Materials Reports B: Research Papers, 2017(7), 63(in Chinese).
毕研刚,许泽军,贾欣茹,等. 材料导报:研究篇, 2017(7), 63.
27 Xin H P. Synthesis and properties of micro cross-linked copolymers. Ph.D. Thesis, Shan Dong University, China, 2014(in Chinese).
辛海鹏. 具有微交联结构共聚物的合成与性质研究. 博士学位论文, 山东大学, 2014.
28 Sun B H, Jin R G. Journal of Beijing Institute of Chemical Technology, 1980(2), 74(in Chinese).
孙本惠,金日光. 北京化工学院学报, 1980(2), 74.
29 Feng R S, Ji W, Guo Y J, et al. Acta Polymerica Sinica, 2014(1), 150(in Chinese).
冯茹森,嵇薇,郭拥军,等. 高分子学报, 2014(1), 150.
30 Zhang C, Wang A, Tang M. Cement and Concrete Research, 1996, 6(26), 943.
31 Fréchet J M J, Hawker C J. Reactive and Functional Polymers, 1995, 26(1), 127.
32 Grinshpun V, Rudin A. Die Makromolekulare Chemie, Rapid Communications, 1985, 6(4), 219.
33 Stecher J, Plank J. Cementand Concrete Research, 2019,119,34.
34 Zhang Y N,Sun J S, Jiang H, et al. Oilfield Chemistry, 2011, 28(3), 331(in Chinese).
张艳娜,孙金声,蒋欢,等. 油田化学, 2011, 28(3), 331.
35 Flatt R J, Bowen P. Journal of the American Ceramic Society, 2010, 89(4), 1244.
36 Wallevik J E. Cement and Concrete Research, 2006, 36(7), 1214.
37 Roussel N, Stefani C, Leroy R. Cement and Concrete Research, 2005, 35(5), 817.
38 Barnes H A. Journal of Rheology, 1999, 33(2), 329.
39 Huang Z, Yang Y, Ran Q, et al. Cement and Concrete Composites, 2018, 93, 323.
[1] 孙国文, 张营, 闫娜, 王亚倩, 李占华. 水下不分散混凝土的抗分散性能设计及其表征研究进展[J]. 材料导报, 2022, 36(1): 20040167-11.
[2] 任军帅, 李欣琳, 肖松涛, 周立鹏, 舒滢, 张英明. 新型Ti-Al-Zr-Nb-Mo-Si钛合金热变形行为及基于BP神经网络模型的本构关系研究[J]. 材料导报, 2020, 34(Z1): 283-288.
[3] 伍勇华, 祝婷, 党梓轩, 李莹, 李国新. 中和与否对聚羧酸减水剂性能的影响及机理分析[J]. 材料导报, 2020, 34(Z1): 592-595.
[4] 张倩倩, 刘建忠, 张丽辉, 刘加平. 矿物掺合料对低水胶比浆体流变性能的影响机制研究[J]. 材料导报, 2020, 34(22): 22054-22057.
[5] 郭增革, 张斌, 姜兆辉, 贾曌, 丁作伟, 程博闻, 李鑫. 压力流场中含炭黑聚对苯二甲酸乙二醇酯熔体的流变特性[J]. 材料导报, 2020, 34(2): 2159-2162.
[6] 吕文强, 辛勇. 聚碳酸酯/聚对苯二甲酸丁二醇酯共混物形态结构对微结构注塑制品性能的影响[J]. 材料导报, 2020, 34(10): 10201-10205.
[7] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed