Please wait a minute...
材料导报  2020, Vol. 34 Issue (21): 21093-21098    https://doi.org/10.11896/cldb.19070169
  无机非金属及其复合材料 |
石墨烯量子点:兼具高效和环保的新型超级电容器电极材料
裴贺兵1, 莫尊理1,2,*, 郭瑞斌1,2, 刘妮娟1, 贾倩倩1, 高琴琴1
1 西北师范大学化学化工学院,兰州 730070;
2 甘肃省军民融合先进结构材料研究中心,兰州 730070
Graphene Quantum Dots: a Novel Supercapacitor Electrode Material that Combines High Efficiency and Environmental Protection
PEI Hebing1, MO Zunli1,2,*, GUO Ruibin1,2, LIU Nijuan1, JIA Qianqian1, GAO Qinqin1
1 College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
2 Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 3619KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯量子点(Graphene quantum dots, GQDs)自2008年首次被科学家发现以来,其制备方法和应用研究一直广受关注。随着科学技术的快速发展,人们对碳材料的研究从一开始的三维石墨、二维石墨烯,到一维碳纳米管,再到现在的准零维石墨烯量子点,经历了一个相对漫长的过程。石墨烯量子点具有特殊的物理和化学性质,比如量子限域效应、边缘效应、生物相容性、光致发光和电致发光等,使其在能量转换和存储、光电催化、荧光传感器、载药、生物成像和治疗诊断中的应用受到越来越多的关注。
超级电容器是一种常见的储能装置,以充放电时间快、功率密度大和使用温度范围宽著称。基于碳材料的双电层电容和基于过渡金属氧化物、导电聚合物的法拉第赝电容材料是目前研究的热点问题,而石墨烯量子点作为碳材料家族的新秀,已经被应用在超级电容器电极材料中,或为单体材料,或与其他纳米材料复合,都表现出优异的性能。
石墨烯量子点的主要制备方法有“自上而下”和“自下而上”两种。其中,“自上而下”法是将大尺寸的石墨烯及其他碳材料切割成小尺寸的量子点,而“自下而上”是以分子为前体,在一定条件下合成量子点。为了发挥石墨烯量子点和其他碳材料、过渡金属氧化物、导电聚合物等之间的协同作用,通过一步或者两步反应合成了石墨烯量子点与三维石墨烯、碳纳米管、活性炭、二氧化锰、二氧化铈、钴酸镍、聚苯胺等物质的纳米复合材料,其电化学性能优于单体材料,在很大程度上提高了超级电容器的整体性能。
本文归纳了石墨烯量子点在超级电容器电极材料中的应用研究进展,分别对石墨烯量子点的制备方法、石墨烯量子点及其纳米复合材料作为超级电容器电极材料进行了介绍,为制备比电容高、能量密度高、循环稳定性优异和环境友好的新型超级电容器提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
裴贺兵
莫尊理
郭瑞斌
刘妮娟
贾倩倩
高琴琴
关键词:  石墨烯量子点  超级电容器  电极材料  纳米复合材料    
Abstract: Since the first discovery of graphene quantum dots (GQDs) by scientists in 2008, the preparation methods and application research have been widely concerned. With the rapid development of science and technology, researcher's investigation on carbon materials has started from three-dimensional graphite, two-dimensional graphene, to one-dimensional carbon nanotubes, and now to quasi-zero-dimensional graphene quantum dots. It has gone through a relatively long process. Graphene quantum dots have special physical and chemical properties, such as quantum confinement effect, edge effect, biocompatibility, photoluminescence and electroluminescence. Their applications in energy conversion and storage, photocatalysis, fluorescence sensor, drug delivery, bioimaging and therapeutic diagnosis have attracted more and more attention.
Supercapacitor is a common energy storage device, which is known for its fast charge and discharge time, high power density and wide temperature range. Carbon-based electric double layer capacitors and Faraday tantalum capacitor materials based on transition metal oxides and conductive polymers are hot issues, and graphene quantum dots, as a newcomer to the carbon material family, have been applied to supercapacitor electrode materials. Medium, either as a monomer material or in combination with other nanomaterials, exhibits excellent performance.
The main preparation methods of graphene quantum dots are “top-down” and “bottom-up”. The “top-down” method is to cut large-sized graphene and other carbon materials into small-sized quantum dots, while the “bottom-up” method is to synthesize quantum dots using molecules as precursors under certain conditions. In order to exert synergy between graphene quantum dots and other carbon materials, transition metal oxides, conductive polymers, etc., graphene quantum dots and three-dimensional graphene, carbon nanotubes, activated carbon, and their composites are synthesized through one-step or two-step reactions. Nanocomposites of manganese oxide, cerium oxide, nickel cobalt oxide, polyaniline and the like have better electrochemical performance than monomer materials, and greatly improve the overall performance of the supercapacitor.
In this paper, the application progress of graphene quantum dots in supercapacitor electrode materials is summarized. The preparation methods of graphene quantum dots, graphene quantum dots and their nanocomposites are introduced as supercapacitor electrode materials respectively. A new type of supercapacitor with high energy density, excellent cycle stability and environmental friendliness is available for reference.
Key words:  graphene quantum dots    supercapacitor    electrode materials    nanocomposites
               出版日期:  2020-11-10      发布日期:  2020-11-17
ZTFLH:  TM53  
基金资助: 国家自然科学基金(51262027);甘肃省科技计划项目(17YF1GA017;17JR5RA082);甘肃省高等教育研究项目(2017A-002)
作者简介:  裴贺兵,2018年6月毕业于北京化工大学理学院应用化学专业,获得理学学士学位。现为西北师范大学化学化工学院硕士研究生,在莫尊理教授的指导下进行研究。目前主要研究领域为纳米功能复合材料。
莫尊理,教授,博士研究生导师,本科、硕士毕业于西北师范大学化学化工学院,博士就读于西北工业大学材料科学学院,获得西北工业大学首届博士论文创新基金资助,并获工学博士学位。先后在北京大学化学学院和兰州大学化学化工学院作为高级访问学者。中国化学会化学教育委员会副主任,甘肃省科学技术普及学会副理事长兼秘书长,全国优秀教师,全国科普工作先进工作者,教育部明德教师奖,甘肃省教学名师,甘肃省创新创业教育教学名师,甘肃省优秀科技工作者,全国科普创作与产品研发示范团队主持人,西北师范大学“学生最喜爱的老师”,西北师大理科学科建设委员会副主任、学术委员会副主任,西北师大国家重点实验室主任。主要从事功能复合材料研究,包括碳基导电复合材料、有机/无机纳米复合材料、生物医学功能材料的研究与设计、功能纳米材料与大分子材料的组装;主持和主研国家及省部级科研项目25项。
引用本文:    
裴贺兵, 莫尊理, 郭瑞斌, 刘妮娟, 贾倩倩, 高琴琴. 石墨烯量子点:兼具高效和环保的新型超级电容器电极材料[J]. 材料导报, 2020, 34(21): 21093-21098.
PEI Hebing, MO Zunli, GUO Ruibin, LIU Nijuan, JIA Qianqian, GAO Qinqin. Graphene Quantum Dots: a Novel Supercapacitor Electrode Material that Combines High Efficiency and Environmental Protection. Materials Reports, 2020, 34(21): 21093-21098.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070169  或          http://www.mater-rep.com/CN/Y2020/V34/I21/21093
[1] Novoselov K S, Gaim A K, Morozov S V, et al. Science, 2004, 306, 666.
[2] Ponomarenko L A, Schedin F, Katsnelson M I, et al.Science, 2008, 320, 356.
[3] Tian P, Tang L, Teng K S, et al. Materials Today Chemistry, 2018, 10, 221.
[4] Haque E, Kim J, Malgras V, et al.Small Methods, 2018, 2(10), 1800050.
[5] Yan Y, Gong J, Chen J, et al.Advanced Materials, 2019, 31(21), 1808283.
[6] Muzaffara A, Ahameda M B, Deshmukha K, et al.Renewable and Sustainable Energy Reviews, 2019, 101, 123.
[7] Pandolfo T, Ruiz V, Sivakkumar S, et al. General properties of electrochemical capacitors, supercapacitors: materials, systems, and applications, Wiley-VCH Verlag GmbH & Co. KGaA, France, 2013.
[8] Ye R Q, Xiang C S, Lin J, et al.Nature Communications, 2013, 4, 2943.
[9] Zhou S, Shao M, Lee S T.ACS Nano, 2012, 6(2), 1059.
[10] Dong Y Q, Chen C Q, Zheng X T, et al.Journal of Materials Chemistry, 2012, 22, 8764.
[11] Zhao M.Applied Sciences, 2018, 8(8), 1303.
[12] Guo B, Yu K, Li H, et al.ACS Applied Materials & Interfaces, 2017, 9(4), 3653.
[13] Peng J, Gao W, Gupta B K, et al.Nano Letter, 2012, 12(2), 844.
[14] Luo Z, Qi G, Chen K, et al.Advanced Functional Materials, 2016, 26 (16), 2739.
[15] Li L L, Ji J, Fei R, et al.Advanced Functional Materials, 2012, 22(14), 2971.
[16] Pan D, Zhang J, Li Z, et al. Advanced Materials, 2010, 22(6), 734.
[17] Zhu X H, Xiao X, Zuo X X, et al.Particle & Particle Systems Characte-rization, 2014, 31(7), 801.
[18] Liu Q, Guo B, Rao Z, et al.Nano Letter, 2013,13(6), 2436.
[19] Li Y, Hu Y, Zhao Y, et al.Advanced Materials, 2011, 23, 776.
[20] Zuo W, Tang L, Xiang J, et al.Applied Physics Letters, 2017, 110(22), 221901.
[21] Qu C, Zhang D, Yang R, et al.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 206, 588.
[22] Gong Y, Shao J, Chen C, et al.Carbon, 2012, 50(12), 4738.
[23] Bian S, Shen C, Qian Y, et al.Sensors and Actuators B: Chemical, 2017, 242, 231.
[24] Shen C, Ge S, Pang Y, et al.Journal of Materials Chemistry B, 2017, 5, 6593.
[25] Gu J, Zhang X, Pang A, et al.Nanotechnology, 2016, 27 (16), 165704.
[26] Yousaf M, Huang H, Li P, et al.ACS Chemical Neuroscience, 2017, 8(6), 1368.
[27] Hou X, Li Y, Zhao C.Australian Journal of Chemistry, 2015, 69(3), 357.
[28] Li R, Liu Y, Li Z, et al. Chemistry-A European Journal, 2016, 22(1), 272.
[29] Do S, Kwon W, Rhee S W.Journal of Materials Chemistry C, 2014, 2, 4221.
[30] Lu J, Yeo P S E, Gan C K, et al.Nature Nanotechnology, 2011, 6(4), 247.
[31] Zhang S, Sui L, Dong H, et al.ACS Applied Materials and Interfaces, 2018, 10(15), 12983.
[32] Shen B, Lang J, Guo R, et al.ACS Applied Materials and Interfaces, 2015, 7(45), 25378.
[33] Niu Y, Wang J, Zhang J, et al.Journal of Electroanalytical Chemistry, 2018, 828, 1.
[34] Chen Q, Hu Y, Hu C, et al.Physical Chemistry Chemical Physics, 2014, 16, 19307.
[35] Luo P, Guan X, Yu Y, et al.Nanomaterials, 2019, 9, 201.
[36] Lee K, Lee H, Shin Y, et al.Nano Energy, 2016, 26, 46.
[37] Ganganboina A B, Chowdhury A D, Doong R.ACS Sustainable Chemistry & Engineering, 2017, 5(6), 4930.
[38] Mondal S, Rana U, Malik S. Chemical Communications, 2015, 51, 12365.
[39] Luo J, Wang J, Liu S, et al.Carbon, 2019, 146, 1.
[40] Jia H, Cai Y, Lin J, et al.Advanced Science, 2018, 5, 1700887.
[41] Li Z, Liu X, Wang L, et al. Small, 2018, 14, 1801498.
[42] Oskueyan G, Lakouraj M M, Mahyari M.Electrochimica Acta, 2019, 299, 125.
[43] Jannah S Z A S N, Mamat S, Abdul R S, et al.Journal of Polymer Science Part A: Polymer Chemistry, 2018, 56, 50.
[44] Wang S, Shen J, Wang Q, et al.ACS Applied Energy Materials, 2019, 2(2), 1077.
[45] Wang S, Zhang K, Wang Q, et al.Electrochimica Acta, 2019, 295, 29.
[1] 张美云, 罗晶晶, 杨斌, 刘国栋, 宋顺喜. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5): 5158-5166.
[2] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[3] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[4] 王桂玲, 杜梦宇, 马陈超, 牛星雨, 张卫民, 王欣昱. 超薄二氧化锰@碳纳米球复合材料的制备及电容特性[J]. 材料导报, 2020, 34(16): 16016-16019.
[5] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[6] 章强, 刘洪利, 陈迎豪, 李兴建, 张宜恒. 纳米二氧化硅改性“Click”型侧链含氟聚氨酯的制备及在织物整理剂上的应用[J]. 材料导报, 2020, 34(14): 14218-14222.
[7] 张文林, 冉奋. 具有高比电容的蘑菇衍生碳材料[J]. 材料导报, 2020, 34(12): 12010-12014.
[8] 任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文. 石墨烯基柔性超级电容器复合电极材料的研究进展[J]. 材料导报, 2020, 34(11): 11099-11105.
[9] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[10] 李一帆,刘宇航,孙晋蒙,吴乾鑫,龚昕,杜洪方,艾伟,黄维. 柔性储能器件的电极设计研究进展[J]. 材料导报, 2020, 34(1): 1177-1186.
[11] 李寒, 孙志鹏, 贾殿赠. 柔性钛箔上生长的自支撑TiO2@NiCo2S4阵列复合材料用作高性能非对称超级电容器电极[J]. 材料导报, 2020, 34(1): 1187-1194.
[12] 孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
[13] 郑孝源, 赵子龙, 任志英. 碳掺杂TiO2纳米管的制备和表征及在污水处理方面的应用[J]. 材料导报, 2019, 33(Z2): 113-115.
[14] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[15] 张涛, 孙友谊, 刘亚青. 静电纺丝法制备壳聚糖/聚乙烯醇基复合碳纳米纤维及其电化学性能[J]. 材料导报, 2019, 33(Z2): 516-520.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed