Please wait a minute...
材料导报  2020, Vol. 34 Issue (1): 1155-1168    https://doi.org/10.11896/cldb.19100132
  |
柔性锂硫电池材料:综述
刘建伟1,王嘉楠1,2,朱蕾1,延卫1,
1 西安交通大学环境科学与工程系,西安 710049
2 西安交通大学理学院应用化学系,西安 710049
Flexible Materials for Lithium-sulfur Batteries: a Review
LIU Jianwei1,WANG Jianan1,2,ZHU Lei1,YAN Wei1,
1 Department of Environmental Science and Engineering,Xi’an Jiaotong University,Xi'an 710049,China
2 Department of Applied Chemistry,School of Science,Xi’an Jiaotong University,Xi'an 710049,China
下载:  全 文 ( PDF ) ( 13876KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,随着可穿戴和便携式产品的快速发展,对柔性电子设备的需求日益增加。柔性电池作为其关键部件,得到了越来越多的研究和关注,开发具有高能量密度的柔性电池,对柔性电子设备的未来发展意义重大。
锂硫电池具有较高的理论容量和能量密度,且成本低廉,是未来储能领域发展的重要前沿方向。因此,开发高性能的柔性锂硫电池更能满足未来柔性可穿戴电子器件的需求。但是,传统锂硫电池很难实现较高的柔韧性,因为其电极材料多为刚性材料,不易或不能弯曲;电解液为液态,弯曲过程中,容易发生泄漏;电池结构多为传统物理组装,材料界面结合较差。电池弯曲变形后,将丧失原有性能,或发生性能的快速衰退。鉴于此,适用于柔性锂硫电池的电极材料、固态电解质的开发及电池结构设计创新成为国内外学者研究的热点。
目前,柔性电极主要采用碳纳米管、石墨烯、碳布、碳纸等碳基材料或高分子材料,在此基础上的改性材料也被广泛应用。这些材料不仅可满足设备对于机械柔性的要求,同时其多孔及大比表面积等性质有助于离子快速的迁移及界面阻抗的降低等,提高了电池整体性能。固态电解质则多采用凝胶电解质、聚合物固态电解质及无机固态电解质,其化学稳定性优良,安全性高,具有较好的柔性和可塑性。同时,根据拓扑原理,可以设计新的电池结构,如纸张叠层型、线缆型、可编织型等,降低形变过程中电池内部结构的应力变化,以满足电池的柔性要求。
本文从电极材料、固态电解质及电池结构设计三方面阐述了锂硫电池柔性化研究的相关成果,分析探讨了面临的问题及未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘建伟
王嘉楠
朱蕾
延卫
关键词:  柔性  锂硫电池  电极材料  固态电解质  结构设计    
Abstract: In recent years, demand for flexible electronic devices has been constantly growing with the rapid emergence of wearable and portable devices. Flexible batteries as the key components have attracted great research interests. It is most critical to develop batteries with higher energy-density for the future development of flexible electronic devices.
Lithium-sulfur (Li-S) batteries are considered to be important frontier of energy storage in the future due to their high theoretical capacity, high energy density and low cost. Thus, the development of high-performance flexible lithium-sulfur batteries can meet better the increasing needs of future flexible wearable electronic devices. However, traditional lithium-sulfur batteries are difficult to achieve high flexibility: the rigid electrode material cannot be bended easily; the liquid electrolytes raise the risk of electrolyte leakage under bending state; poor interfacial contact owing to the assembly method based on physical joining. Once subjected to bending or stretching, traditional lithium-sulfur batteries will lose its function or undergo fast performance decline. Therefore, considerable efforts have been made in these years focusing on developing electrode materials and solid-state electrolytes which are adaptable for flexible batteries, as well as on creating special battery structures.
Currently, flexible electrode materials are mainly based on carbon or its modified materials, such as carbon nanotubes, graphene, carbon cloth and carbon paper, as well as polymer materials. These materials not only can meet the flexible requirements, but also are beneficial for the overall battery performance through strengthening Li+/electrons transportation and reducing interface impedance due to the porous structure and the large specific surface. Solid-state electrolytes which contains gel polymer electrolytes, polymer electrolytes and inorganic electrolytes, has good chemical stability, high safety, high flexibility and plasticity. At the same time, the novel battery structure design, such as linear structure, paper folding structure and braided structure have been realized according to the topology principle, through which can the stress change of the battery internal structure during deformation process be reduced.
This review gives a summary of relevant achievements in the flexibilization of lithium-sulfur batteries from the perspectives of electrode mate-rials, solid-state electrolytes, and battery structure design. It also includes a prospective discussion upon the challenges and future development trends.
Key words:  flexibility    lithium-sulfur battery    electrode material    solid-state electrolyte    structural design
                    发布日期:  2020-01-15
ZTFLH:  TM912  
基金资助: 国家自然科学基金(51978569);国家自然科学基金青年项目(51803164);中国博士后基金(2018M643635);陕西省自然科学基金(2019JQ-126)
通讯作者:  yanwei@xjtu.edu.cn   
作者简介:  刘建伟,男,博士研究生,自2015年在西安交通大学攻读博士学位。目前研究方向主要为静电纺丝纳米材料的可控制备及在电化学储能领域的应用。
延卫,教授,博士研究生导师,1997年获得南开大学博士学位,2007年入选“教育部新世纪优秀人才”。研究方向包括水处理及资源化利用、纳米功能材料合成、电化学与光电催化、电化学储能、气敏传感器等。主持各类科研项目30余项,包括国家自然科学基金面上项目、“973”计划子课题、国家科技支撑计划项目、“863”计划项目等。发表各类论文180余篇,其中SCI收录120余篇、专利13篇。获省级鉴定达到国际先进水平科研成果1项,获陕西省科技二等奖和咸阳市科技一等奖各1项。
引用本文:    
刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
LIU Jianwei,WANG Jianan,ZHU Lei,YAN Wei. Flexible Materials for Lithium-sulfur Batteries: a Review. Materials Reports, 2020, 34(1): 1155-1168.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100132  或          http://www.mater-rep.com/CN/Y2020/V34/I1/1155
1 Heo J S, Eom J, Kim Y H, et al. Small, 2018, 14 (3), 34.
2 Wang X, Lu X, Liu B,et al.Advanced Materials, 2014, 26 (28), 4763.
3 He Y, Matthews B, Wang J, et al.Journal of Materials Chemistry A, 2018, 6 (3), 735.
4 Liu W, Song M S, Kong B, et al.Advanced Materials, 2017, 29 (1), 3436.
5 Chen Y, Fu K, Zhu S, et al.Nano Letters, 2016, 16 (6), 3616.
6 Aliahmad N, Liu Y, Xie J, et al.ACS Applied Materials & Interfaces, 2018, 10 (19), 16490.
7 Amin K, Meng Q, Ahmad A, et al.Advanced Materials, 2018, 30 (4), 1703868.
8 Qian G, Zhu B, Liao X, et al.Advanced Materials, 2018, 30 (12), 1704947.
9 Zhang Z W, Peng H J, Zhao M, et al.Advanced Functional Materials, 2018, 28 (38), 1707536.
10 Zhang X, Xie H, Kim C S, et al.Materials Science and Engineering R: Reports, 2017, 121(1), 29.
11 Liang J, Sun Z H, Li F, et al. Energy Storage Materials,2016, 2, 76.
12 Schuster J, He G, Mandlmeier B, et al.Angewandte Chemie, 2012, 51 (15), 3591.
13 Zhu J, Zhu P, Yan C, et al.Progress in Polymer Science,2019, 90, 118.
14 Peng H J, Huang J Q, Cheng X B, et al.Advanced Energy Materials,2017, 7 (24), 1700260.
15 Seh Z W, Li W, Cha J J, et al.Nature Communications, 2013, 4, 1331.
16 Guo Y P, Li H Q, Zhai T Y, et al. Advanced Materials,2017, 29 (29),1700007.
17 Yoo E, Kim J, Hosono E, et al. Nano Letters, 2008, 8 (8),2277.
18 Peng H J, Xu W T, Zhu L, et al.Advanced Functional Materials, 2016, 26 (35), 6351.
19 Chen C, Cao J, Lu Q, et al.Advanced Functional Materials, 2017, 27 (3), 1604639.
20 Chen C, Cao J, Wang X, et al.Nano Energy, 2017, 42, 187.
21 Pan Z, Ren J, Guan G, et al.Advanced Energy Materials, 2016, 6 (11), 1600271.
22 Su Y S, Fu Y, Manthiram A.Physical Chemistry Chemical Physics, 2012, 14 (42), 14495.
23 Sun L, Li M, Jiang Y, et al. Nano Letters, 2014, 14 (7), 4044.
24 Yuan Z, Peng H J, Huang J Q, et al.Advanced Functional Materials, 2014, 24 (39), 6105.
25 Zhang Y Z, Zhang Z, Liu S, et al.ACS Applied Materials & Interfaces, 2018, 10 (10), 8749.
26 Razzaq A A, Yao Y, Shah R, et al.Energy Storage Materials, 2019, 16, 194.
27 Wang X, Wan F, Zhang L, et al.Advanced Functional Materials, 2018, 28 (18), 1707247.
28 Wang Q, Wang X, Wan F, et al.Small, 2018, 14 (23), 1800280.
29 Bonaccorso F, Colombo L, Yu G, et al.Science, 2015, 347 (6217), 1246501.
30 Zhang L, Wang Y, Niu Z, et al.Carbon, 2019, 141, 400.
31 Niu Z, Liu L, Zhang L, et al.Advanced Energy Materials, 2015, 5 (23), 1500677.
32 Lv W, Li Z, Deng Y, et al.Energy Storage Materials, 2016, 2, 107.
33 Hooch A W, Choi Y, Seong K D, et al.Advanced Materials Interfaces, 2018, 5 (5), 1701212.
34 Wen L, Li F, Cheng H M.Advanced Materials, 2016, 28 (22), 4306.
35 Jin J, Wen Z, Ma G, et al.RSC Advances, 2013, 3 (8), 2558.
36 Cao J, Chen C, Zhao Q, et al.Advanced Materials, 2016, 28 (43), 9629.
37 Chen K, Cao J, Lu Q, et al.Nano Research, 2018, 11 (3), 1345.
38 Hu G, Sun Z, Shi C, et al.Advanced Materials,2017, 29 (11).
39 Wang C, Su K, Wan W, et al. Journal of Materials Chemistry A, 2014, 2 (14), 5018.
40 Song J, Yu Z, Gordin M L, et al. Nano Letters, 2016, 16 (2), 864.
41 Xiao P, Bu F, Yang G, et al. Advanced Materials, 2017, 29 (40), 3324.
42 Zhou G, Li L, Ma C, et al. Nano Energy, 2015, 11, 356.
43 Shi H, Zhao X, Wu Z S, et al. Nano Energy, 2019, 60, 743.
44 Elazari R, Salitra G, Garsuch A, et al. Advanced Materials, 2011, 23 (47), 5641.
45 Chung S H, Chang C H, Manthiram A Robust. Small, 2016, 12 (7), 939.
46 He N, Zhong L, Xiao M, et al. Scientific Reports, 2016, 6, 33871.
47 Liang X, Liu Y, Wen Z, et al. Journal of Power Sources,2011, 196 (16), 6951.
48 Wang J, Chen J, Konstantinov K,et al.Electrochimica Acta, 2005,51,4634.
49 Li F, Kaiser M R, Ma J, et al.Energy Storage Materials, 2018, 13, 312.
50 Zhang Y, Zhao Y, Bakenov Z, et al.Electrochimica Acta, 2014, 143, 49.
51 Zhou X, Chen F, Yang J.Journal of Energy Chemistry, 2015, 24 (4), 448.
52 Xin P, Jin B, Li H, et al.ChemElectroChem, 2017, 4 (1), 115.
53 Zhao Y, Zhu W, Chen G Z, et al.Journal of Power Sources, 2016, 327, 447.
54 Luo Y, Guo R, Li T, et al.ChemSusChem, 2019, 12 (8), 1591.
55 Zhou W, Yu Y, Chen H, et al.Journal of the American Chemical Society, 2013, 135 (44), 16736.
56 Sen S, Dutta D, Bhattacharyya A J.Journal of Materials Chemistry A, 2015, 3 (42), 20958.
57 Zhang K, Xu Y, Lu Y Y. et al.Journal of Materials Chemistry A, 2016, 4 (17), 6404.
58 Li W, Zhang Q, Zheng G, et al.Nano Letters, 2013, 13 (11), 5534.
59 Wu F, Wu S, Chen R, et al.Electrochemical and Solid-State Letters, 2010, 13 (4), A29.
60 Wang X, Zhang Z, Yan X, et al.Electrochimica Acta, 2015, 155, 54.
61 Zhang M, Meng Q, Ahmad A, et al.Journal of Materials Chemistry A, 2017, 5 (33), 17647.
62 Li H, Gong Y, Fu C, et al.Journal of Materials Chemistry A, 2017, 5 (8), 3875.
63 Luo J, Lee R C, Jin J T, et al.Chemical Communications, 2017, 53 (5), 963.
64 Wang H, Zhang W, Liu H, et al.Angewandte Chemie, 2016, 55 (12), 3992.
65 Zheng X, Zheng Y, Zhang H, et al.Chemical Engineering Journal, 2019, 370, 547.
66 Seh Z W, Yu J H, Li W, et al.Nature Communications, 2014, 5, 5017.
67 Peng H J, Zhang Z W, Huang J Q, G. et al.Advanced Materials, 2016, 28 (43), 9551.
68 Jeong T G, Choi D S, Song H, et al.ACS Energy Letters, 2017, 2 (2), 327.
69 He Y, Chang Z, Wu S, et al.Advanced Energy Materials, 2018, 8 (34), 1802130.
70 Wu Q, Zhou X, Xu J, et al.Journal of Energy Chemistry, 2019, 38, 94.
71 Mao Y, Li G, Guo Y, et al.Nature Communications, 2017, 8, 14628.
72 Chen K, Sun Z, Fang R, et al.Advanced Functional Materials, 2018, 28 (38), 1707592.
73 Sun L, Kong W, Jiang Y, et al.Journal of Materials Chemistry A, 2015, 3 (10), 5305.
74 Zhai P Y, Huang J Q, Zhu L, et al.Carbon, 2017, 111, 493.
75 Kim S, Song H, Jeong Y. Carbon, 2017, 113, 371.
76 Zeng L, Pan F, Li W, et al.Nanoscale,2014, 6 (16), 9579.
77 Zhu L, Peng H J, Liang J, et al.Nano Energy, 2015, 11, 746.
78 Xiang M, Wu H, Liu H, et al.Advanced Functional Materials, 2017, 27 (37), 1702573.
79 Zhao X, Kim M, Liu Y, et al.Carbon, 2018, 128, 138.
80 Chen Y, Lu S, Wu X, et al.The Journal of Physical Chemistry C, 2015, 119 (19), 10288.
81 Zhou G, Zhao Y, Manthiram A.Advanced Energy Materials, 2015, 5 (9), 1402263.
82 Lu Y, Jia Y, Zhao S, et al.ACS Applied Energy Materials, 2019, 2 (6), 4151.
83 Liu R, Liu Y, Chen J, et al.Nano Energy,2017, 33, 325.
84 Quartarone E, Mustarelli P.Chemical Society Reviews, 2011, 40 (5), 2525.
85 Jin J, Wen Z, Liang X, et al.Solid State Ionics, 2012, 225, 604.
86 Zhang S S.Journal of the Electrochemical Society, 2013, 160 (9), A1421.
87 Zhang Y, Zhao Y, Bakenov Z, et al.Journal of Solid State Electrochemistry, 2014, 18 (4), 1111.
88 Liu M, Jiang H R, Ren Y X, et al.Electrochimica Acta, 2016, 213, 871.
89 Huang H, Ding F, Zhong H, et al.Journal of Materials Chemistry A, 2018, 6 (20), 9539.
90 Song A, Huang Y, Zhong X, et al.Journal of Membrane Science, 2018, 556, 203.
91 Kim J G, Son B, Mukherjee S, et al. Journal of Power Sources, 2015, 282, 299.
92 Zhang Y, Zhao Y, Gosselink D, et al. Ionics, 2014, 21 (2), 381.
93 Lin Y, Wang X M, Liu J, et al. Nano Energy, 2017, 31, 478.
94 Lin Y, Li J, Liu K, et al. Green Chemistry, 2016, 18 (13), 3796.
95 Lim Y J, Kim H W, Lee S S, et al. ChemPlusChem, 2015, 80 (7), 1100.
96 Zhai H, Xu P, Ning M Q, et al. Nano Letters, 2017, 17 (5), 3182.
97 Dai J, Fu K, Gong Y, et al. ACS Materials Letters, 2019, 1 (3), 354.
98 Shen Y, Zhang Y, Han S, et al.Joule,2018, 2 (9), 1674.
99 Yao M, Wang R, Zhao Z, et al.ACS Nano,2018, 12 (12), 12503.
100 Wang J N, Yang G R, Chen J, et al. Advanced Energy Materials, 2019, 9(38), 1902001.
101 Fang X, Weng W, Ren J, et al. Advanced Materials, 2016, 28 (3), 491.
102 Hu L, Pasta M, Mantia F L, et al. Nano Letters,2010, 10 (2), 708.
103 Lee Y H, Kim J S, Noh J, et al. Nano Letters,2013, 13 (11), 5753.
[1] 董大彰, 赵梦媛, 解昊, 边凌峰, 杨星, 孟彬. Ba、Ga共掺杂对石榴石型固态电解质Li7La3Zr2O12显微组织及电导率的影响[J]. 材料导报, 2020, 34(4): 4001-4006.
[2] 林进义,安翔,白鲁冰,徐曼,韦传新,解令海,林宗琼,黄维. 柔性高分子半导体:力学性能和设计策略[J]. 材料导报, 2020, 34(1): 1001-1008.
[3] 崔铮. 柔性混合电子——基于印刷加工实现柔性电子制造[J]. 材料导报, 2020, 34(1): 1009-1013.
[4] 王倩,高能,张天垚,姚光,潘泰松,高敏,林媛. 氧化物功能薄膜器件的柔性化策略[J]. 材料导报, 2020, 34(1): 1014-1021.
[5] 陆骐峰,孙富钦,王子豪,张珽. 柔性人工突触:面向智能人机交互界面和高效率神经网络计算的基础器件[J]. 材料导报, 2020, 34(1): 1022-1049.
[6] 薛秀丽,王世斌,曾超峰,李林安,王志勇. 柔性基底上金属薄膜的失效行为及界面能测试方法研究进展[J]. 材料导报, 2020, 34(1): 1050-1058.
[7] 李法利,李晟斌,曹晋玮,刘宜伟,尚杰,李润伟. 弹性敏感材料与传感器件[J]. 材料导报, 2020, 34(1): 1059-1068.
[8] 骆泽纬,田希悦,范基辰,杨鑫,樊天意,王超伦,吴幸,褚君浩. 智能时代下的新型柔性压阻传感器[J]. 材料导报, 2020, 34(1): 1069-1079.
[9] 高久伟,卢乾波,郑璐,王学文,黄维. 柔性生物电传感技术[J]. 材料导报, 2020, 34(1): 1095-1106.
[10] 杨丹,刘妍,钟正祥,田宫伟,樊文倩,王宇,齐殿鹏. 植入式神经微电极[J]. 材料导报, 2020, 34(1): 1107-1113.
[11] 马飞祥,丁晨,凌忠文,袁伟,孟秀清,苏文明,崔铮. 导电织物制备方法及应用研究进展[J]. 材料导报, 2020, 34(1): 1114-1125.
[12] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[13] 卢颖,陈威林,高双,李润伟. 柔性阻变存储材料与器件研究进展[J]. 材料导报, 2020, 34(1): 1146-1154.
[14] 孟锦涛,周良毅,钟芸,沈越,黄云辉. 柔性钠离子电池研究进展[J]. 材料导报, 2020, 34(1): 1169-1176.
[15] 李一帆,刘宇航,孙晋蒙,吴乾鑫,龚昕,杜洪方,艾伟,黄维. 柔性储能器件的电极设计研究进展[J]. 材料导报, 2020, 34(1): 1177-1186.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed