Please wait a minute...
材料导报  2020, Vol. 34 Issue (1): 1107-1113    https://doi.org/10.11896/cldb.19100204
  |
植入式神经微电极
杨丹1,刘妍1,,钟正祥1,田宫伟1,樊文倩2,王宇3,齐殿鹏1,
1 哈尔滨工业大学化工与化学学院,新能源转换与储存关键材料技术工业和信息化部重点实验室,哈尔滨 150001
2 哈尔滨理工大学材料科学与工程学院,哈尔滨150080
3 郑州大学材料科学与工程学院,郑州 450001
Implantable Neural Microelectrodes
YANG Dan1,LIU Yan1,,ZHONG Zhengxiang1,TIAN Gongwei1,FAN Wenqian2,WANG Yu3,QI Dianpeng1,
1 MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage,School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150001,China
2 School of Materials Science and Engineering,Harbin University of Science and Technology,Harbin 150080,China
3 School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China
下载:  全 文 ( PDF ) ( 3699KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 神经电极是实现人体和外部机器间信息融合的关键界面器件,是脑科学、生物电子医疗等前沿领域的技术核心。早期出现的神经电极以金属材料和半导体材料为主,这两类材料具备优越的导电性能,但其硬度远高于生物组织(相差四个数量级以上),生物兼容性差,易引起生物组织的排异反应,导致电极失效,并且在植入和使用过程中也容易对生物组织造成损害。近年来,人们尝试利用导电聚合物、水凝胶以及碳纳米管等柔性材料替代早期的金属、半导体等刚性材料,实现柔性生物电极的制备,以解决电极与生物组织间模量不匹配的问题。从而开发出低阻抗的电极-组织界面,最小化电极植入过程中对生物组织的创伤,保证植入电极长期稳定性的同时提高了其导电性,这对于精准的神经电刺激以及高质量记录神经电生理信号来说都至关重要。目前研究的神经电极多以柔性植入式为主,它将新兴材料、微加工技术与神经工程相融合,显示出优于其他神经电极的特性,在疼痛抑制、脑机接口、人体假肢等方面获得多项成果,在临床应用方面占有重要地位。
本文归纳了植入式神经微电极的研究进展,主要从刚性神经微电极、神经电极柔性化、可拉伸柔性神经电极几个方面进行介绍。分析了刚性植入式神经电极存在的问题,并引出基于新型材料的柔性植入式神经电极,提出优化方案的同时对其前景进行展望,以期为制备性能优异且稳定的植入式神经电极提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨丹
刘妍
钟正祥
田宫伟
樊文倩
王宇
齐殿鹏
关键词:  微机械技术  植入式神经电极  柔性材料  生物相容性  脑机接口  神经接口    
Abstract: As a key interface device for information communication between human body and external machine, neural electrodes play an important role in brain science, biological electronic medicine and other frontier fields. Originally, metal and semiconductor were used as neural electrode materials, due to their good electrical conductivity. However their hardness are much higher than that of biological tissues (more than 4 orders of magnitude higher), which results in poor biocompatibility. This causes immune responses of biological tissues and electrodes failure. In addition, they are easy to cause damage to biological tissues during the implanting process. In recent years, flexible materials such as conductive polymers, hydrogels and carbon nanotubes are employed to produce flexible neural electrodes. This kind of electrode can reduce the mechanical mismatch across the electronics-tissue interface. Furthermore, the flexible neural electrodes also show advantages in decreasing the impedance between electrode-tissue interface, minimizing biological tissue injury during implantation, ensuring the long-term stability of electrodes and improving their electrical conductivity. All the features are essential for precisely neural stimulation and high quality physiological signal recording. At present, implanted flexible neural microelectrodes attractive many efforts, which requires the combination of new materials, micro-processing technique and neural engineering. The implanted flexible neural electrodes present better performance than other neural electrodes, and many achievements have been gotten in the field of pain suppression, brain-computer interface, human prosthesis and so on. Therefore, the implanted flexible neural electrodes play a more and more important role in clinical application.
In this review, we summarize the research progress of implanted neural microelectrodes from three aspects: neural microelectrode, flexible neural electrode and stretchable neural electrode. Firstly, we analyze the problems with rigid implanted neural electrodes. Subsequently, we introduce flexible implanted neural electrodes and demonstrate their advantages. Finally, we discuss how to further optimize the performance of the implanted flexible neural electrodes and prospect their development. It is expected to provide references for the preparation of implanted neural electrodes with excellent properties.
Key words:  micromechanical technology    implantable neural electrode    flexible material    biocompatibility    brain-computer interface    neural interface
                    发布日期:  2020-01-15
ZTFLH:  Q-337  
基金资助: 国家自然科学基金青年基金(51903068;51903065;NSFC-NRF-5171101411);哈尔滨工业大学青年拔尖基金(AUGA5710050219)
通讯作者:  dpqi@hit.edu.cn; liuyan1986@hit.edu.cn   
作者简介:  杨丹,2019年6月毕业于东北林业大学,获得工学学士学位,现为哈尔滨工业大学化工与化学学院硕士研究生,在齐殿鹏教授的指导下进行研究,目前主要研究领域为柔性电极器件。
刘妍,哈尔滨工业大学化工与化学学院工程师。2008年本科毕业于牡丹江师范大学,2013年获吉林大学物理化学博士学位,2014年1月到2016年1月,新加坡南洋理工大学材料科学与工程学院访问学者,2019年2月入职哈尔滨工业大学化工与化学学院,任工程师。主要从事基于生物质的生物传感器的开发研究工作。
齐殿鹏,哈尔滨工业大学化工与化学学院教授、博士研究生导师。2007年本科毕业于吉林大学化学学院,2012获吉林大学物理化学博士学位,2012年8月到2018年9月在新加坡南洋理工大学做博士后研究工作,2017年6月被评为资深博士后研究员。入选2018年哈尔滨工业大学“青年拔尖人才”,被聘为“准聘教授”。长期以来一直从事柔性人体界面传感研究。目前发表SCI论文60余篇,被引用3 000余次。
引用本文:    
杨丹,刘妍,钟正祥,田宫伟,樊文倩,王宇,齐殿鹏. 植入式神经微电极[J]. 材料导报, 2020, 34(1): 1107-1113.
YANG Dan,LIU Yan,ZHONG Zhengxiang,TIAN Gongwei,FAN Wenqian,WANG Yu,QI Dianpeng. Implantable Neural Microelectrodes. Materials Reports, 2020, 34(1): 1107-1113.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100204  或          http://www.mater-rep.com/CN/Y2020/V34/I1/1107
1 Yang L, Li Y C, Fang Y.Advanced Materials,2013, 25(28), 3881.
2 Ganji M, Paulk A C, Yang J C, et al.Nano Letters, 2019, 19(9), 6244.
3 Zhang G S.China Medical Devices, 2012, 27(12), 84 (in Chinese).
张冠石. 中国医疗设备, 2012, 27(12), 84.
4 Oxley T J, Opie N L, John S E, et al.Nature Biotechnology, 2016, 34(3), 320.
5 Birmingham K, Gradinaru V, Anikeeva P, et al. Nature Reviews Drug Discovery, 2014, 13(6), 39.
6 Wolpaw J R, Birbaumer N, Heetderks W J, et al.IEEE Transactions on Rehabilitation Engineering, 2000, 8(2), 164.
7 Cao Y, Zheng X X.Chinese Journal of Biomedical Engineering,2014, 33(6), 659 (in Chinese).
曹艳, 郑筱祥. 中国生物医学工程学报,2014, 33(6), 659.
8 Chapin J K, Moxon K A, Markowitz R S, et al.Nature Neuroscience,1999, 2(7), 664.
9 Wessberg J, Stambaugh C R, Kralik J D, et al.Nature, 2000, 408(6810), 361.
10 Kruger J, Bach M.Experimental Brain Research, 1981, 41(2), 191.
11 Strumwasser F.Science (New York, NY), 1958, 127(3296), 469.
12 Pei W H.Science & Technology Review, 2018, 36(6), 77 (in Chinese).
裴为华.科技导报, 2018, 36(6), 77.
13 Marg E, Adams J E.Electroencephalography and Clinical Neurophysiology, 1967, 23(3), 277.
14 Takahashi H, Suzurikawa J, Nakao M, et al.Ieee Transactions on Biome-dical Engineering,2005, 52(5), 952.
15 Normann R A, Maynard E M, Rousche P J, et al.Vision Research, 1999, 39(15), 2577.
16 Maynard E M, Nordhausen C T, Normann R A.Electroencephalography and Clinical Neurophysiology, 1997, 102(3), 228.
17 Suner S, Fellows M R, Vargas-Irwin C, et al.IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13(4), 524.
18 Campbell P K, Jones K E, Huber R J, et al.IEEE Transactions on Biomedical Engineering, 1991, 38(8), 758.
19 Branner A, Normann R A.Brain Research Bulletin, 2000, 51(4), 293.
20 Branner A, Stein R B, Fernandez E, et al.IEEE Transactions on Biome-dical Engineering, 2004, 51(1), 146.
21 Bhandari R, Negi S, Rieth L, et al. In:Conference Record of 14th International Conference on Solid-State Sensors, Actuators and Microsystems. Lyon, 2008, pp. 123.
22 Hochberg L R, Serruya M D, Friehs G M, et al.Nature, 2006, 442(7099), 164.
23 Bai Q, Wise K D, Anderson D J.IEEE Transactions on Biomedical Engineering, 2000, 47(3), 281.
24 Cheung K C.Biomedical Microdevices, 2007, 9(6), 923.
25 Takeuchi S, Suzuki T, Mabuchi K, et al.Journal of Micromechanics and Microengineering, 2004, 14(1), 104.
26 Abidian M R, Ludwig K A, Marzullo T C, et al.Advanced Materials, 2009, 21(37), 3764.
27 Vetter R J, Williams J C, Hetke J F, et al.IEEE Transactions on Biome-dical Engineering, 2004, 51(6), 896.
28 Chou N, Yoo S, Kim S.IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(4), 544.
29 Wang X W, Gu Y, Xiong Z P, et al. Advanced Materials, 2014, 26(9), 1336.
30 Rousche P J, Pellinen D S, Pivin D P, et al.IEEE Transactions on Biomedical Engineering, 2001, 48(3), 361.
31 Rodger D C, Fong A J, Wen L, et al.Sensors and Actuators B-Chemical, 2008, 132(2), 449.
32 Takeuchi S, Suzuki T, Mabuchi K, et al.Journal of Micromechanics and Microengineering, 2004, 14(1), 104.
33 Chen C H, Lin C T, Hsu W L, et al.Nanomedicine-Nanotechnology Bio-logy and Medicine, 2013, 9(5), 600.
34 Wu F, Im M, Yoon E. In: Conference Record of the 2011 IEEE 16th International Conference on Solid-State Sensors, Actuators and Microsystems. Beijing, 2011, pp. 966.
35 Baek J Y, Kwon G H, Kim J Y, et al. In: Conference Record of Advances in Nanomaterials and Processing. Cheju Isl, 2007, pp. 165.
36 Nguyen-Vu T D B, Chen H, Cassell A M, et al.IEEE Transactions on Biomedical Engineering, 2007, 54(6), 1121.
37 Du Z Z, Li W, Ai W, et al.RSC Advances, 2013, 3(48), 25788.
38 Zhan B B, Li C, Yang J, et al.Small, 2014, 10(20), 4042.
39 Shoval A, Adams C, David-Pur M, et al.Frontiers in Neuroengineering, 2009, 2, 4.
40 Kim D H, Wiler J A, Anderson D J, et al.Acta Biomaterialia, 2010, 6(1), 57.
41 Li J W, Wang S Y.Nanotechnology and Precision Engineering, 2014, 12(3), 217 (in Chinese).
李璟文, 王守岩. 纳米技术与精密工程, 2014, 12(3), 217.
42 Berggren M, Richter-Dahlfors A.Advanced Materials, 2007, 19(20), 3201.
43 Khodagholy D, Doublet T, Gurfinkel M, et al.Advanced Materials, 2011, 23(36), 268.
44 David-Pur M, Bareket-Keren L, Beit-Yaakov G, et al.Biomedical Microdevices, 2014, 16(1), 43.
45 Lovat V, Pantarotto D, Lagostena L, et al.Nano Letters, 2005, 5(6), 1107.
46 Abidian M R, Martin D C.Advanced Functional Materials, 2009, 19(4), 573.
47 Fan B H, Mei X G, Ouyang J Y.Macromolecules, 2008, 41(16), 5971.
48 Mandal H S, Knaack G L, Charkhkar H, et al.Acta Biomaterialia, 2014, 10(6), 2446.
49 Yu S H, Lee J H, Choi M S, et al.Molecular Crystals and Liquid Crystals, 2013, 580(1), 76.
50 Wang K. The fabrication of novel implantable microwire microelectrode array of neural interface and its modification. Master's thesis, Academy of Military Medical Sciences, China, 2016 (in Chinese).
王坤. 用于植入式神经接口的微丝电极阵列的研制与改性研究. 硕士学位论文, 中国人民解放军军事医学科学院, 2016.
51 Hsu H L, Teng I J, Chen Y C, et al.Advanced Materials, 2010, 22(19), 2177.
52 Wang B H, Huang W, Chi L F, et al.Chemical Reviews, 2018, 118(11), 5690.
53 Cheng T, Zhang Y Z, Lai W Y, et al.Advanced Materials, 2015, 27(22), 3349.
54 Qi D P, Liu Z Y, Liu Y, et al.Advanced Materials, 2015, 27(37), 5559.
55 Qi D P, Liu Y, Liu Z Y, et al.Advanced Materials, 2017, 29(5), 1602802.
56 Qi D P, Liu Z Y, Liu Y, et al.Advanced Materials, 2017, 29(40), 1702800.
57 Li C G. Investigation and fabrication of novel flexible and stretchable electrodes with multi-layer composite structures.Master's thesis, Xidian University, China, 2015 (in Chinese).
李晨光. 新型多层复合结构柔性可拉伸电极的研究与制备. 硕士学位论文, 西安电子科技大学, 2015.
58 Qi D P, Liu Z Y, Yu M, et al.Advanced Materials, 2015, 27(20), 3145.
59 Liu C B, Fan Q L, Huang W,et al. Physics, 2005,(6), 424 (in Chinese).
刘承斌, 范曲立, 黄维, 等. 物理, 2005(6), 424.
60 Huang W.Optics & Optoelectronic Technology, 2016, 14(5), 1 (in Chinese).
黄维.光学与光电技术, 2016, 14(5), 1.
61 Gray D S, Tien J, Chen C S.Advanced Materials,2004, 16(5), 393.
62 Tybrandt K, Khodagholy D, Dielacher B, et al. Advanced Materials, 2018, 30(15), 1706520.
63 Liu J, Fu T M, Cheng Z G, et al.Nature Nanotechnology,2015, 10(7), 629.
64 Lacour S P, Benmerah S, Tarte E, et al.Medical & Biological Enginee-ring & Computing, 2010, 48(10), 945.
65 Wang Y, Zhu C, Pfattner R, et al.Science Advances, 2017, 3(3), 1602076.
66 Liu Y X , Liu J, Chen S C, et al.Nature Biomedical Engineering, 2019, 3(1), 58.
67 Huang S, Liu Y, Zhao Y, et al.Advanced Functional Materials, 2019, 29(6), 1805924.
[1] 曾德鹏, 余森, 王岚, 于振涛, 刘印, 盖晋阳, 代晓军. 医用金属材料表面自身纳米化研究进展[J]. 材料导报, 2019, 33(Z2): 343-347.
[2] 阮世超, 罗丹丹, 郝亚, 白雪, 陈岑. 氧化铱/聚多巴胺/层粘连蛋白仿生涂层的制备[J]. 材料导报, 2018, 32(24): 4351-4356.
[3] 钟红荣, 张岩, 包红, 方艳, 吴婷芳, 朱勇, 张小宁, 徐水. 丝素/明胶/壳聚糖支架材料的构建及表征[J]. 材料导报, 2018, 32(22): 3954-3960.
[4] 代晓军, 杨西荣, 王昌, 徐鹏, 赵曦, 于振涛. 生物医用可降解锌基合金的研究进展[J]. 材料导报, 2018, 32(21): 3754-3759.
[5] 洪雅真, 杨丁柱. 聚乳酸纳米纤维支架的生物相容性及促细胞成软骨分化[J]. 材料导报, 2018, 32(18): 3239-3243.
[6] 姜涛, 王瑞彬, 霍枫. 用于体外循环装置的材料涂层技术综述与展望[J]. 《材料导报》期刊社, 2018, 32(13): 2304-2310.
[7] 詹世平, 闫思圻, 赵启成, 王卫京, 李鸣明. 石墨烯基材料的生物医用性能及其应用*[J]. 《材料导报》期刊社, 2017, 31(13): 25-32.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed