Please wait a minute...
材料导报  2018, Vol. 32 Issue (22): 3954-3960    https://doi.org/10.11896/j.issn.1005-023X.2018.22.020
  高分子与聚合物基复合材料 |
丝素/明胶/壳聚糖支架材料的构建及表征
钟红荣, 张岩, 包红, 方艳, 吴婷芳, 朱勇, 张小宁, 徐水
西南大学生物技术学院,纤维材料研究室,重庆 400715
Preparation and Characterization of Silk Fibroin/Gelatin/Chitosan Scaffold
ZHONG Hongrong, ZHANG Yan, BAO Hong, FANG Yan, WU Tingfang, ZHU Yong, ZHANG Xiaoning, XU Shui
Laboratory of Fiber Materials, College of Biotechnology, Southwest University, Chongqing 400715
下载:  全 文 ( PDF ) ( 6278KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于丝素、明胶和壳聚糖三者作为生物材料的优良性能,采用二次冷冻干燥方法制备了一种疏松多孔的新型组织工程材料。首先检测了复合支架材料的理化性能,其次研究了该材料的形貌结构,最后利用细胞学和动物学实验对该材料的细胞毒性和生物相容性进行了评价。结果显示,复合支架材料孔隙率高于(53.52±1.16)%,吸水率高于(89.36±0.43)%。在预冻温度为-20 ℃,以戊二醛作交联剂,丝素/明胶/壳聚糖复合比例为1∶1∶1.5时,制备的材料力学性能达到最优,断裂伸长率为(11.5±1.05)%。扫描电镜图显示该材料具有连通的三维多孔结构。红外光谱及X射线衍射表明材料各组分化学基团间发生了相互作用,并伴有结晶状态的改变。小鼠体内植入实验表明,该支架无毒、生物相容性好,是一种综合性能优异的组织工程材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟红荣
张岩
包红
方艳
吴婷芳
朱勇
张小宁
徐水
关键词:  丝素  冷冻干燥  组织工程材料  生物相容性    
Abstract: Based on good performance in the application of biomaterial, silk fibroin, gelatin and chitosan were used to prepare a new type of tissue engineering material via twice lyophilization. The prepared material possesses highly loose and inter-connective microstructure. In the experiment, the physical and chemical properties of silk fibroin/gelatin/chitosan composite scaffold material were studied first; then the morphology of this material was investigated; finally, the cytotoxicity and biocompatibility of this mate-rial were evaluated. The experimental results showed that the porosity of the scaffold material was greater than (53.52±1.16)%, and the water absorption of the scaffold material was larger than (89.36±0.43)%. In addition, the optimal value for mechanical elongation at break of silk fibroin/gelatin/chitosan composite scaffold material is (11.5±1.05)% when the pretreatment temperature reaches -20 ℃, and the ratio of silk fibroin/gelatin/chitosan was 1∶1∶1.5 with crosslinker of glutaraldehyde. Infrared spectrum and X-ray diffraction revealed the interaction among the chemical groups of each component within the prepared material and the crystalline state change of this material respectively. The engraftment of silk fibroin/gelatin/chitosan composite scaffold material in mice demonstrated that the scaffold material is non-toxic, biocompatible, and therefore can be used as a comprehensive and excellent tissue engineering material.
Key words:  silk fibroin    lyophilization    tissue engineering material    biocompatibility
               出版日期:  2018-11-25      发布日期:  2018-12-21
ZTFLH:  TQ341.5  
基金资助: 重庆市蚕丝纤维新材料工程技术研究中心专项研究(SILKGCZX009)
通讯作者:  徐水:通信作者,女,副教授,研究方向为纤维功能材料 E-mail: xushui@swu.edu.cn   
作者简介:  钟红荣:女,1992生,硕士研究生,研究方向为茧丝化学 E-mail: zhonhonun@163.com
引用本文:    
钟红荣, 张岩, 包红, 方艳, 吴婷芳, 朱勇, 张小宁, 徐水. 丝素/明胶/壳聚糖支架材料的构建及表征[J]. 材料导报, 2018, 32(22): 3954-3960.
ZHONG Hongrong, ZHANG Yan, BAO Hong, FANG Yan, WU Tingfang, ZHU Yong, ZHANG Xiaoning, XU Shui. Preparation and Characterization of Silk Fibroin/Gelatin/Chitosan Scaffold. Materials Reports, 2018, 32(22): 3954-3960.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.22.020  或          http://www.mater-rep.com/CN/Y2018/V32/I22/3954
1 Jin H J, Kaplan D L. Mechanism of silk processing in insects and spiders[J]. Nature,2003,424(6952):1057.
2 Fan H, Liu H, Toh S L, et al. Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model[J]. Biomaterials,2009,30(28):4967.
3 Wang Y, Rudym D D, Walsh A, et al. In vivo degradation of three-dimensional silk fibroin scaffolds[J]. Biomaterials,2008,29(24-25):3415.
4 汪多仁.明胶[J].中国食用品化学品,1998(4):38.
5 Ayre A P, Pawar H A, Khutle N M, et al. Polymeric nanoparticles in drug delivery systems critical review and concepts[J]. Pharmaceutical Technology,2014,5(4):2809.
6 蒋挺大.壳聚糖[M].北京:化学工业出版社,2006:20.
7 Embery G, Hall R C, Waddington R J, et al. Proteoglycans in dentinogenesis[J]. Critical Reviews in Oral Biology & Medicine An Official Publication of the American Association of Oral Biologists,2001,12(4):331.
8 Cheng G T, Wang X, Tao S J, et al. Differences in regenerated silk fibroin prepared with different solvent systems: From structures to conformational changes[J]. Journal of Applied Polymer Science,2015,132(22):41959.
9 Lu S Z, Li M Z, Wang H J, et al. Research of crosslinking silk fibroin membrane with polyglycerin epoxy resin[J]. Journal of Textile Research,2001,22(6):58(in Chinese).
卢神州,李明忠,王洪杰,等.聚多元醇环氧树脂交联丝素膜的研究[J].纺织学报,2001,22(6):58.
10 Urbanczyk G W, Lipp-Symonowicz B. The influence of processing terms of chitosan membranes made of differently ceacetylated chitin on the crystalline structure of membranes[J]. Journal of Applied Polymer Science,1994,51(13):2191.
11 Yang F, Cui W J, Xiong Z, et al. Poly(L,L-lactide-co-glycolide)/tricaicium phospate composite scaffold and its various changes during degradation invitro[J]. Polymer Degradation and Stability,2006,91(12):3065.
12 Horan R L, Antle K, Collette AL, et al. In vitro degradation of silk fibroin[J]. Biomaterials,2005,26(17):3385.
[1] 徐翔宇, 李弘坤, 詹达, 刘向阳. PEDOT∶PSS掺杂丝素蛋白复合薄膜的半导体性能[J]. 材料导报, 2019, 33(10): 1734-1737.
[2] 高保东, 钟红荣, 吴婷芳, 谭翠, 张岩, 徐水. 丝素/海藻酸钠膜韧性的优化及膜释药机理分析[J]. 《材料导报》期刊社, 2018, 32(7): 1197-1201.
[3] 阮世超, 罗丹丹, 郝亚, 白雪, 陈岑. 氧化铱/聚多巴胺/层粘连蛋白仿生涂层的制备[J]. 材料导报, 2018, 32(24): 4351-4356.
[4] 代晓军, 杨西荣, 王昌, 徐鹏, 赵曦, 于振涛. 生物医用可降解锌基合金的研究进展[J]. 材料导报, 2018, 32(21): 3754-3759.
[5] 洪雅真, 杨丁柱. 聚乳酸纳米纤维支架的生物相容性及促细胞成软骨分化[J]. 材料导报, 2018, 32(18): 3239-3243.
[6] 姜涛, 王瑞彬, 霍枫. 用于体外循环装置的材料涂层技术综述与展望[J]. 《材料导报》期刊社, 2018, 32(13): 2304-2310.
[7] 詹世平, 闫思圻, 赵启成, 王卫京, 李鸣明. 石墨烯基材料的生物医用性能及其应用*[J]. 《材料导报》期刊社, 2017, 31(13): 25-32.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed