Please wait a minute...
材料导报  2018, Vol. 32 Issue (22): 3948-3953    https://doi.org/10.11896/j.issn.1005-023X.2018.22.019
  高分子与聚合物基复合材料 |
可降解材料聚碳酸亚丙酯和聚乳酸的溶度参数与相容性
桑练勇1, 胡志德1, 晏华1, 代军2, 张寒松1
1 中国人民解放军陆军勤务学院,重庆 401311;
2 海军驻温州地区军事代表室,舟山 316000
Study on Degradable Materials Poly(Propylene Carbonate) and Poly(Lactic Acid): Solubility Parameters and Compatibility
SANG Lianyong1, HU Zhide1, YAN Hua1, DAI Jun2, ZHANG Hansong1
1 Army Logistics University of PLA, Chongqing 401311;
2 Navy Representative Office in Wenzhou, Zhoushan 316000
下载:  全 文 ( PDF ) ( 2655KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用基团贡献法求出了聚碳酸亚丙酯(PPC)和聚乳酸(PLA)的一维溶度参数和Hansen三维溶度参数理论值,并通过溶解试验获得了PPC和PLA的三维溶度参数值,结合Teas图分析了聚合物与溶剂之间的溶度参数距离(Ri)和Flory-Huggins相互作用参数(χAB),预测和分析了PPC和PLA的相容性。结果表明,PPC和PLA的一维溶度参数理论值分别为20.37(J/cm3)1/2、19.97 (J/cm3)1/2; PPC的Hansen三维溶度参数(δdδpδh)和总溶度参数理论值(δ)分别为14.68 (J/cm3)1/2、7.37 (J/cm3)1/2、10.79 (J/cm3)1/2和19.65 (J/cm3)1/2,PLA的分别为15. 45 (J/cm3)1/2、8.51 (J/cm3)1/2、11.02 (J/cm3)1/2和20.80 (J/cm3)1/2;试验法得出PPC的δdδpδhδ分别为16.94 (J/cm3)1/2、7.05 (J/cm3)1/2、6.75 (J/cm3)1/2、19.56 (J/cm3)1/2,PLA的则分别为16.83 (J/cm3)1/2、6.40 (J/cm3)1/2、6.70 (J/cm3)1/2、19.21 (J/cm3)1/2,且在Teas图中,所有良溶剂位于一定的溶解区域内,不良溶剂位于区域外,聚合物与良溶剂的Ri小于与不良溶剂的Ri,聚合物与良溶剂的χAB小于0.5,与不良溶剂的χAB大于0.5,表明试验结果可信;通过理论计算和试验法求出PPC和PLA都具有相近的溶度参数值,且溶度参数差值的绝对值(Δ)位于0.077~1.300 (J/cm3)1/2之间,表明两者之间为部分相容。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
桑练勇
胡志德
晏华
代军
张寒松
关键词:  聚碳酸亚丙酯  聚乳酸  溶度参数  相容性    
Abstract: The theoretical values of one-dimensional solubility parameters and three-dimensional Hansen solubility parameters of poly(propylene carbonate) (PPC) and poly(lactic acid) (PLA) were calculated according to the group contribution method. The practical three-dimensional solubility parameters of PLA and PPC were derived by dissolution experiments. Solubility parameter distance (Ri) and Flory-Huggins interaction parameters (χAB) between solvents and polymers were analyzed by Teas diagram, meanwhile the compatibility between PPC and PLA was predicted and analyzed. The results showed that the values of one-dimensional solubility parameters for PPC and PLA were 20.37 (J/cm3)1/2 and 19.97 (J/cm3)1/2 respectively, and the values of Hansen three-dimensional solubility parameters and total solubility parameters (δdδpδhδ) for PPC and PLA were 14.68 (J/cm3)1/2,7.37 (J/cm3)1/2,10.79 (J/cm3)1/2, 19.65 (J/cm3)1/2 and 15.45 (J/cm3)1/2,8.51 (J/cm3)1/2,11.02 (J/cm3)1/2,20.80 (J/cm3)1/2 respectively. Moreover, it could be find, from the dissolution experiment, that the δdδpδhδ values of PPC and PLA were 16.94 (J/cm3)1/2,7.05 (J/cm3)1/2,6.75 (J/cm3)1/2, 19.56 (J/cm3)1/2 and 16.83 (J/cm3)1/2,6.40 (J/cm3)1/2,6.70 (J/cm3)1/2,19.21 (J/cm3)1/2, respectively. In the Teas plot, all the good solvents were located in a certain dissolution zone, while the poor solvents were located outside the zone. The Ri between polymers and good solvents was lower than the Ri of poor solvents. Moreover, the χAB between the polymers and good solvents was lower than 0.5, however χAB of poor solvents was higher than 0.5, which proved the results were credible. The solubility parameters of PPC and PLA derived from theoretical calculations and experimental methods were similar, and the absolute value of solubility parameters difference (Δ) lay in 0.077—1.300 (J/cm3)1/2, indicating the partial compatibility of PPC and PLA.
Key words:  poly(propylene carbonate)    poly(lactic acid)    solubility parameters    compatibility
               出版日期:  2018-11-25      发布日期:  2018-12-21
ZTFLH:  TQ321  
基金资助: 军内装备科研项目
通讯作者:  胡志德:通信作者,男,1988年生,博士,讲师,主要从事高分子材料和智能材料研究 E-mail:huzd6503@163.com   
作者简介:  桑练勇:男,1992年生,硕士研究生,主要从事高分子材料研究 E-mail:1114339903@qq.com
引用本文:    
桑练勇, 胡志德, 晏华, 代军, 张寒松. 可降解材料聚碳酸亚丙酯和聚乳酸的溶度参数与相容性[J]. 材料导报, 2018, 32(22): 3948-3953.
SANG Lianyong, HU Zhide, YAN Hua, DAI Jun, ZHANG Hansong. Study on Degradable Materials Poly(Propylene Carbonate) and Poly(Lactic Acid): Solubility Parameters and Compatibility. Materials Reports, 2018, 32(22): 3948-3953.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.22.019  或          http://www.mater-rep.com/CN/Y2018/V32/I22/3948
1 Hiroshi S, Inous S. Copolymerization of carbon dioxide and epoxide[J]. Journal of Polymer Science Part A: Polymer Chemistry,2004,42(22):5561.
2 Hiroshi M, Youhei Y, Keiestu A, et al. Purification and characte-rization of a biodegradable plastic-degrading enzyme from aspergillu-soryzae[J]. Applied Microbiology and Biotechnology,2005,67 (6):778.
3 Zou W, Chen R Y, Zhang G Z, et al. Mechanical, thermal and rheological properties and morphology of poly(lactic acid)/poly(propylene carbonate) blends prepared by vane extruder [J]. Polymers for Advanced Technologies,2016,27(11):1430.
4 Sun Q, Mekonnen T, Misra M, et al. Novel biodegradable cast film from carbon dioxide based copolymer and poly(lactic acid)[J]. Journal of Polymers & the Environment,2016,24(1):23.
5 Sang L Y, Yan H, Dai J, et al. Properties and kinetics of poly(propylene carbonate) and poly (lactic acid) blends[J]. China Plastics,2017,31(12):39 (in Chinese).
桑练勇,晏华,代军,等.聚碳酸亚丙酯与聚乳酸共混物性能及热分解动力学分析[J].中国塑料,2017,31(12):39.
6 何曼君,张红东,陈维笑,等.高分子物理[M].上海:复旦大学出版社,2016.
7 Hansen C M. Hansen solubility parameters: A user’s handbook [M]. Boca Raton: CRC Press,2007.
8 Hansen C M. The three dimensional solubility parameter-key to paint component affinities: Ⅰ. Solvents, plasticizers, polymers, and resins [J]. Journal of Paint Technology,1967,39(505):104.
9 Tang S Y, Zhang R, Liu F, et al. Hansen solubility parameters of polyglycolic acid and interaction parameters between polyglycolic acid and solvents [J]. European Polymer Journal,2015,72:83.
10 Cai J L, Zeng S S, Zheng B H, et al. Molecular dynamics simulation on the compatibilities of HTPE/Plasticizer mixtures[J]. Chinese Journal of Energetic Material,2014(5):588(in Chinese).
蔡贾林,郑申声,郑保辉,等.HTPE/增塑剂共混体系相容性的分子动力学模拟[J].含能材料,2014(5):588.
11 Manson J A, Sperling L H. Polymer blends and composites [M]. London: Plenum Press,1976.
12 Fried J R. Polymer science and technology [M]. Beijing: China Machine Press,2011:113.
13 Van Krevelen D W. Properties of polymers-their estimation and correlation with chemical structure [M]. New York: Elsevier Scientific Publishing Company,1976.
14 Coleman M M, Painter P C, Graf J F. Specific interactions and the miscibility of polymer blends [M]. Boca Raton: CRC Press,1995.
15 Saiz C A, Darvishmanesh S, Buekenhoudt A, et al. Shortcut applications of the hansen solubility parameter for organic solvent nanofiltration[J]. Journal of Membrane Science,2017,546:120.
16 Lorenzo M L D, Ovyn R, Malinconico M, et al. Peculiar crystallization kinetics of biodegradable poly(lactic acid)/poly(propylene carbonate) blends[J]. Polymer Engineering & Science,2016,55(12):2698.
17 Flodgerg G, Helland I, Thomsson L, et al. Barrier properties of polypropylene carbonate and poly(lactic acid) cast films[J]. Euro-pean Polymer Journal,2015,63:217.
[1] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[2] 常悦, 陈支泽, 杨一奇. 聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性[J]. 材料导报, 2019, 33(16): 2808-2812.
[3] 彭少贤,蔡小琳,胡欢,赵西坡. 环境友好型增塑剂增韧聚乳酸的最新研究进展[J]. 材料导报, 2019, 33(15): 2617-2623.
[4] 王鑫, 石敏, 余晓磊, 彭少贤, 赵西坡. 聚己二酸对苯二甲酸丁二酯(PBAT)共混改性聚乳酸(PLA)高性能全生物降解复合材料研究进展[J]. 材料导报, 2019, 33(11): 1897-1909.
[5] 付晓刚, 张金权, 秦博, 马浩然, 龙斌. 氢化锆与高温钠的相容性研究[J]. 材料导报, 2019, 33(11): 1801-1804.
[6] 李 款,潘友强,张 辉,陈李峰,张 健. 钢桥面铺装用环氧沥青相容性研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1534-1540.
[7] 赵西坡, 刘畅, 徐敏, 彭少贤. 无机成核剂改善聚乳酸结晶性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1158-1164.
[8] 阮世超, 罗丹丹, 郝亚, 白雪, 陈岑. 氧化铱/聚多巴胺/层粘连蛋白仿生涂层的制备[J]. 材料导报, 2018, 32(24): 4351-4356.
[9] 钟红荣, 张岩, 包红, 方艳, 吴婷芳, 朱勇, 张小宁, 徐水. 丝素/明胶/壳聚糖支架材料的构建及表征[J]. 材料导报, 2018, 32(22): 3954-3960.
[10] 代晓军, 杨西荣, 王昌, 徐鹏, 赵曦, 于振涛. 生物医用可降解锌基合金的研究进展[J]. 材料导报, 2018, 32(21): 3754-3759.
[11] 洪雅真, 杨丁柱. 聚乳酸纳米纤维支架的生物相容性及促细胞成软骨分化[J]. 材料导报, 2018, 32(18): 3239-3243.
[12] 李文豪, 吴义强, 李萍, 李新功, 左迎峰. 竹纤维/聚乳酸可降解复合材料相容界面构建进展[J]. 材料导报, 2018, 32(17): 3076-3082.
[13] 姜涛, 王瑞彬, 霍枫. 用于体外循环装置的材料涂层技术综述与展望[J]. 《材料导报》期刊社, 2018, 32(13): 2304-2310.
[14] 齐亚平,罗发亮,王克智,沈志远,武学坚,王迪然. TMC-300对PLLA/PPC合金性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1672-1677.
[15] 左迎峰, 吴义强, 顾继友, 佘佳荣, 郭鑫, 江萍. MAH改性方法对淀粉/聚乳酸界面相容性的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 41-45.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed