Please wait a minute...
材料导报  2018, Vol. 32 Issue (21): 3754-3759    https://doi.org/10.11896/j.issn.1005-023X.2018.21.011
  金属与金属基复合材料 |
生物医用可降解锌基合金的研究进展
代晓军1, 2, 杨西荣1, 王昌2, 徐鹏3, 赵曦2, 于振涛2
1 西安建筑科技大学冶金工程学院,西安 710055;
2 西北有色金属研究院,陕西省医用金属材料重点实验室,西安 710016;
3 东北大学材料科学与工程学院,沈阳 110819
Research Progress on Biomedical Degradable Zinc-based Alloys
DAI Xiaojun1, 2, YANG Xirong1, WANG Chang2, XU Peng3, ZHAO Xi2, YU Zhentao2
1 School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055;
2 Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an 710016;
3 School of Materials Science and Engineering, Northeastern University, Shenyang 110819
下载:  全 文 ( PDF ) ( 1968KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锌基合金是近几年新兴的一种医用可降解材料,有望应用于心血管支架及骨植入等医疗器械。锌是人体必需的营养元素,具有良好的生物相容性及适宜的体内降解速率,作为可降解合金的基体有很广的应用前景。然而,生物可降解锌基合金的设计、加工、强化及降解机理等研究尚处于起步阶段,还需要做大量的基础研究工作。本文以最终医疗器械产品的理想标准要求为切入点,从生物相容性、力学性能及抗腐蚀性能等方面对近几年医用锌基合金的研究成果进行了综述分析,并展望了其未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
代晓军
杨西荣
王昌
徐鹏
赵曦
于振涛
关键词:  锌基合金  生物可降解  生物相容性  力学性能  抗腐蚀性    
Abstract: Zinc-based alloys are emerging medical degradable materials in recent years and are expected to be used in medical devices such as cardiovascular stents and bone implants. Zinc is an essential nutritional element of the human body, has good biocompatibility and suitable degradation rate in vivo, and has great potential to be a promising substrate for biodegradable alloys. However, the research on the design, processing, strengthening and degradation mechanism of biodegradable zinc-based alloys is still in its infancy, and a great deal of basic research is needed. In this paper, the biocompatibility, mechanical properties and corrosion resistance and other aspects of the research results of medical zinc-based alloys in recent years are reviewed based on the final standard of medical device products. The future research and development direction of zinc-based alloys are prospected as well.
Key words:  zinc-based alloy    biodegradable    biocompatibility    mechanical properties    corrosion resistance
                    发布日期:  2018-11-21
ZTFLH:  TG146.1  
基金资助: 陕西省重大科技成果转化项目(2016KTCG01-04); 陕西省重点研发计划项目(2017ZDXM-SF-039)
作者简介:  代晓军:男,1989年生,硕士,研究方向为医用金属材料设计与加工 Tel:029-86222297 E-mail:296648131@qq.com;于振涛:通信作者,男,教授,博士研究生导师,研究方向为医用金属材料 Tel:029-86264213 E-mail:yzt@c-nin.com
引用本文:    
代晓军, 杨西荣, 王昌, 徐鹏, 赵曦, 于振涛. 生物医用可降解锌基合金的研究进展[J]. 材料导报, 2018, 32(21): 3754-3759.
DAI Xiaojun, YANG Xirong, WANG Chang, XU Peng, ZHAO Xi, YU Zhentao. Research Progress on Biomedical Degradable Zinc-based Alloys. Materials Reports, 2018, 32(21): 3754-3759.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.21.011  或          http://www.mater-rep.com/CN/Y2018/V32/I21/3754
1 Yuan G Y, Zhang J, Ding W J.Research progress of Mg-based alloys as degradable biomedical materials[J].Materials China,2011,30(2):44(in Chinese).
袁广银,张佳,丁文江.可降解医用镁基生物材料的研究进展[J].中国材料进展,2011,30(2):44.
2 Zheng Y F, Wu Y H.Revolutionizing metallic biomaterials[J].Acta Metallurgica Sinica,2017,53(3):257(in Chinese).
郑玉峰,吴远浩.处在变革中的医用金属材料[J].金属学报,2017,53(3):257.
3 Kaur K, Gupta R, Saraf S A, et al.Zinc: The metal of life[J].Comprehensive Reviews in Food Science & Food Safety,2014,13(4):358.
4 Hennig B, Toborek M, Mcclain C J.Antiatherogenic properties of zinc: Implications in endothelial cell metabolism[J].Nutrition,1996,12(10):711.
5 Lin W, Li Q, Qi H, et al.Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold[J].Acta Biomaterialia,2017,54:454.
6 Bowen P K, Shearier E R, Zhao S, et al.Biodegradable metals for cardiovascular stents: From clinical concerns to recent Zn-alloys[J].Advanced Healthcare Materials,2016,5(10):1121.
7 Erinc M, Sillekens W H, Mannens R, et al.Applicability of existing magnesium alloys as biomedical implant materials[C]∥Magnesium Technology 2009.San Francisco, CA, USA,2009.
8 Wang L Q, Ren Y P, Qin G W.Research progress of Zn-based alloys as biodegradable materials[J].Chinese Journal of Rare Metals,2017,41(5):571(in Chinese).
王利卿,任玉平,秦高梧.生物可降解锌基合金的研究进展[J].稀有金属,2017,41(5):571.
9 Zberg B, Uggowitzer P J, Loffler J F.MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants[J].Nature Materials,2009,8(11):887.
10 Bowen P K, Drelich J, Goldman J.Zinc exhibits ideal physiological corrosion beha-vior for bioabsorbable stents[J].Advanced Materials,2013,25(18):2577.
11 Ma J, Zhao N, Zhu D H.Endothelial cellular responses to biodegradable metal zinc[J].ACS Biomaterials Science & Engineering,2015,1(11):1174.
12 Li H F, Xie X H, Zheng Y F, et al.Corrigendum: Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr[J].Scientific Reports,2015,5:10719.
13 Murni N S, Dambatta M S, Yeap S K, et al.Cytotoxicity evaluation of biodegradable Zn-3Mg alloy toward normal human osteoblast cells[J].Materials Science Engineering C,2015,49:560.
14 Gong H B, Wang K, Strich R, et al.In vitro biodegradation beha-vior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy[J].Journal of Biomedical Materials Research Part B Applied Biomaterials,2015,103(8):1632.
15 El-Rahman S S. Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment)[J].Pharmacological Research,2003,47(3):189.
16 Vojetch D, Kubasek J, Serak J, et al.Mechanical and corrosion properties of newly deve-loped biodegradable Zn-based alloys for bone fixation[J].Acta Biomaterialia,2011,7(9):3515.
17 朱世杰,岑盼盼,关绍康.一种新型可生物降解Zn-Mg-Nd锌合金植入材料及其制备方法:中国,CN 106676327 A [P].2017-05-17.
18 Niu J L, Tang Z B, Huang H, et al.Research on a Zn-Cu alloy as abiodegradable material for potential vascular stents application[J].Materials Science Engineering,2016,C69:407.
19 Tang Z B, Huang H, Niu J L, et al.Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants[J].Materials & Design,2017,117:84.
20 Shen C, Liu X W, Fan B, et al.Mechanical properties, in vitro degradation behavior, hemocompatibility and cytotoxicity evaluation of Zn-1.2Mg alloy for biodegradable implants[J].RSC Advances, DOI:10.1039/C6RA14300H.
21 Sikora-Jasinska M, Mostaed E, Mostaed A, et al.Fabrication, mechanical properties and in vitro degradation behavior of newly deve-loped ZnAg alloys for degradable implant applications[J].Materials Science & Engineering C-Materials for Biological Applications,2017,77:1170.
22 石章智,王鲁宁,张海军.一种高塑性和可生物降解Zn-Mn系锌合金及其制备方法:中国,CN 107177754 A [P].2017-09-19.
23 郑玉峰,杨宏韬,成艳.一种Zn-Fe系锌合金及其制备方法与应用:中国,CN 106606800 A [P].2017-05-03.
24 Zhao S, Mcnamara C T, Bowen P K, et al.Structural characteristics and in vitro, biodegradation of a novel Zn-Li alloy prepared by induction melting and hot rolling[J].Metallurgical & Materials Transactions A,2017,48(3):1204.
25 Jarzebska A, Bieda M, Kawalko J, et al.A new approach to plastic deformation of biodegradable zinc alloy with magnesium and its effect on microstructure and mechanical properties[J].Materials Letters,2017,DOI:10.1016/j.matlet.2017.09.090.
26 Wang C, Yu Z T, Cui Y J, et al.Processing of a novel Zn alloy micro-tube for biodegradable vascular stent application[J].Journal of Materials Science & Technology,2016,32(9):925.
27 Mostaed E, Sikora-Jasinska M, Mostaed A, et al.Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation[J].Journal of the Mechanical Behavior of Biomedical Materials,2016,60:581.
28 郑玉峰,李华芳,秦岭.一种Zn-Mg系锌合金及其制备方法与应用:中国,CN 104195368 A [P].2014-12-10.
29 郑玉峰,袁威,杨宏韬.一种Zn-Cu系锌合金及其制备方法与应用:中国,CN 104195368 A [P].2014-12-10.
30 Liu X W, Sun J K, Yang Y H, et al.Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn-Mg-Sr alloys as biodegradable metals[J].Materials Letters,2016,162:242.
31 Li H F, Yang H T, Zheng Y F, et al.Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr[J].Materials & Design,2015,83:95.
32 Liu X W, Sun J K, Zhou F Y, et al.Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application[J].Materials & Design,2016,94:95.
33 Shen C.Study on mechanical properties, degradation properties and biocompatibility of medical degradable zine alloy (Zn-1.2Mg-0.1Ca)[D].Xi'an: The Fourth Military Medical University, 2017(in Chinese).
沈超. 医用可降解锌合金(Zn-1.2Mg-0.1Ca)的机械性能、降解性能和生物相容性研究[D].西安:第四军医大学,2017.
34 石章智,王鲁宁,张海军.一种Zn-Mn-Cu系锌合金及其制备方法:中国,CN 107198796 A[P].2017-09-26.
35 Chen Y, Zhang W, Maitz M F, et al.Comparative corrosion beha-vior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline[J].Corrosion Science,2016,111:541.
36 Drelich A, Zhao S, Guillory R, et al.Long-term surveillance of zinc implant in murine artery: Surprisingly steady biocorrosion rate[J].Acta Biomaterialia,2017,58:539.
37 Yang H, Wang C, Liu C, et al.Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model[J].Biomaterials,2017,145:92.
38 Dambatta M S, Kurniawan D, Sudin I, et al.Influence of homogenization treatment on the degradation behavior of Zn-3Mg alloy in si-mulated body fluid solution[J].Materials and Design 2015,85:431.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[11] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[12] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[13] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[14] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[15] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed