Please wait a minute...
材料导报  2019, Vol. 33 Issue (11): 1801-1804    https://doi.org/10.11896/cldb.18040165
  核材料 |
氢化锆与高温钠的相容性研究
付晓刚, 张金权, 秦博, 马浩然, 龙斌
中国原子能科学研究院,北京 102413
The Compatibility of Zirconium Hydride in a Sodium Environment
FU Xiaogang, ZHANG Jinquan, QIN Bo, MA Haoran, LONG Bin
China Institute of Atomic Energy, Beijing 102413
下载:  全 文 ( PDF ) ( 1760KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在快堆设计和应用过程中,氢化锆是非常有用的慢化材料,但是关于氢化锆与高温钠相容性的研究报道较少,氢化锆与高温钠接触后长时间服役是否满足使用要求尚无数据借鉴,故本研究将在500 ℃、600 ℃和700 ℃下开展氢化锆与高温钠的相容性试验。另外,将表面制备有ZrO2的氢化锆在650 ℃下进行钠相容性测试,以分析ZrO2在高温钠中阻止氢释放的能力。结果表明:在500 ℃、600 ℃和700 ℃钠中,氢化锆表面均会形成ZrO2氧化膜;氢化锆在500 ℃钠中的氢含量没有变化;氢化锆在600 ℃和700 ℃钠中试验120 h后,氢含量均出现明显的下降;在650 ℃下,氢化锆表面制备的ZrO2氧化膜无法阻止氢气释放。在高温氢释放过程中,由于氢原子和氧原子的相对运动,ZrO2/ZrH1.8界面处的ZrO2逐渐转变为Zr3O。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付晓刚
张金权
秦博
马浩然
龙斌
关键词:  快中子反应堆  慢化材料  氢化锆  高温钠  相容性    
Abstract: In the process of fast reactor design and application, the zirconium hydride is a useful neutron moderator for fast reactor. However, there are few reports on the compatibility of the zirconium hydride in sodium at high temperature. And no data are available to support the application at high temperature sodium. As a result, the compatibility of the zirconium hydride in sodium was studied in this work. The ZrH1.8 was tested at 500 ℃, 600 ℃ and 700 ℃ in sodium. Another, some samples prepared with a ZrO2 layer were also tested at 650 ℃ in sodium to evaluate the capabi-lity of preventing hydrogen loss. The test results showed that a ZrO2 layer grew on the surface of zirconium hydride when it was tested at 500 ℃, 600 ℃ and 700 ℃ in sodium. There was no hydrogen emission of ZrH1.8 at 500 ℃. However, the hydrogen content decreased obviously after 120 h at 600 ℃ and 700 ℃. Moreover, a ZrO2 layer prepared for zirconium hydride could not prevent hydrogen loss after exposure at 650 ℃ in sodium. In the process of hydrogen emission at high temperature, due to the opposite movement of hydrogen and oxygen, ZrO2 transformed into Zr3O gradually at the ZrO2/ZrH1.8 interface.
Key words:  fast reactor    moderator    zirconium hydride    high temperature sodium    compatibility
                    发布日期:  2019-05-21
ZTFLH:  TL34  
通讯作者:  binlong@ciae.ac.cn   
作者简介:  付晓刚,中国原子能科学研究院,高级工程师。2009年7月毕业于清华大学材料科学与工程系,获得硕士学位。同年加入中国原子能科学研究院,主要从事快堆慢化材料以及耐热钢的相关研究。龙斌,理学博士(瑞士洛桑联邦理工大学),中国原子能科学研究院研究员,核工业研究生院教授,主要从事反应堆材料以及液态金属技术研究。
引用本文:    
付晓刚, 张金权, 秦博, 马浩然, 龙斌. 氢化锆与高温钠的相容性研究[J]. 材料导报, 2019, 33(11): 1801-1804.
FU Xiaogang, ZHANG Jinquan, QIN Bo, MA Haoran, LONG Bin. The Compatibility of Zirconium Hydride in a Sodium Environment. Materials Reports, 2019, 33(11): 1801-1804.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040165  或          http://www.mater-rep.com/CN/Y2019/V33/I11/1801
1 Mueller W M. Metal hydrides,Academic Press, USA,1968.
2 Tsuchiya B, Huang J, Konashi K, et al. Journal of Nuclear Materials,2001,289,329.
3 Terrani K A, Balooch M, Wongsawaeng D, et al. Journal of Nuclear Materials,2010,397,61.
4 Ponomarev-Stepnoi N N, Bubelev V G, Glushkov E S, et al. Atomic Energy,2007,102(2),87.
5 Olander D, Greenspan E, Garkisch H D, et al. Nuclear Engineering and Design,2009,239,1406.
6 Simnad M T. Nuclear Engineering and Design,1981,64,403.
7 Wang J W, Wang L J, Chen W D, et al. Chinese Journal of Rare Metals,2012,36(1),61(in Chinese).
王建伟,王力军,陈伟东,等.稀有金属,2012,36(1),61.
8 Zhang H F, Yang Q F, Wang Z D, et al. Atomic Energy Science and Technology,2005,39(suppl),83(in Chinese).
张华峰,杨启法,王振东,等.原子能科学技术,2005,39(增刊),83.
9 Xie J C, Zhao S Z, Jia B S, et al. Atomic Energy Science and Technology,2011,45(1),48(in Chinese).
解家春,赵守智,贾宝山,等.原子能科学技术,2011,45(1),48.
10 Naoyuki T, Tomoyasu M. In: International Conference on Global Environment and Advanced Nuclear Power Plants, Kyoto,2003,pp.1169.
11 Wang W E, Olander D R. Journal of the American Ceramic Society,1995,78(12),3323.
12 Barraclough K G, Beevers C J. Journal of Nuclear Materials,1970,34,125.
13 Forcey K S, Ross D K, Simpson J C B. Journal of Nuclear Materials,1988,160,117.
14 Ma H R, Fu X G, Qin B. Atomic Energy Science and Technology,2016,50(11),2023(in Chinese).
马浩然,付晓刚,秦博.原子能科学技术,2016,50(11),2023.
[1] 李 款,潘友强,张 辉,陈李峰,张 健. 钢桥面铺装用环氧沥青相容性研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1534-1540.
[2] 阮世超, 罗丹丹, 郝亚, 白雪, 陈岑. 氧化铱/聚多巴胺/层粘连蛋白仿生涂层的制备[J]. 材料导报, 2018, 32(24): 4351-4356.
[3] 钟红荣, 张岩, 包红, 方艳, 吴婷芳, 朱勇, 张小宁, 徐水. 丝素/明胶/壳聚糖支架材料的构建及表征[J]. 材料导报, 2018, 32(22): 3954-3960.
[4] 桑练勇, 胡志德, 晏华, 代军, 张寒松. 可降解材料聚碳酸亚丙酯和聚乳酸的溶度参数与相容性[J]. 材料导报, 2018, 32(22): 3948-3953.
[5] 代晓军, 杨西荣, 王昌, 徐鹏, 赵曦, 于振涛. 生物医用可降解锌基合金的研究进展[J]. 材料导报, 2018, 32(21): 3754-3759.
[6] 洪雅真, 杨丁柱. 聚乳酸纳米纤维支架的生物相容性及促细胞成软骨分化[J]. 材料导报, 2018, 32(18): 3239-3243.
[7] 姜涛, 王瑞彬, 霍枫. 用于体外循环装置的材料涂层技术综述与展望[J]. 《材料导报》期刊社, 2018, 32(13): 2304-2310.
[8] 左迎峰, 吴义强, 顾继友, 佘佳荣, 郭鑫, 江萍. MAH改性方法对淀粉/聚乳酸界面相容性的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 41-45.
[9] 詹世平, 闫思圻, 赵启成, 王卫京, 李鸣明. 石墨烯基材料的生物医用性能及其应用*[J]. 《材料导报》期刊社, 2017, 31(13): 25-32.
[10] 李志坤, 彭家惠, 杨再富. 矿物掺合料对聚羧酸减水剂与水泥相容性的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 115-120.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed