Please wait a minute...
材料导报  2019, Vol. 33 Issue (11): 1793-1800    https://doi.org/10.11896/cldb.18050035
  核材料 |
低活化铁素体/马氏体耐热钢中MX型碳氮化物强化研究进展
周金华, 申勇峰
东北大学材料科学与工程学院,材料各向异性与织构教育部重点实验室,沈阳 110819
Progress of MX Type Carbonitride Reinforcement in Reduced Activated Ferrite/Martensitic Heat-resistant Steel
ZHOU Jinhua, SHEN Yongfeng
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University,Shenyang 110819
下载:  全 文 ( PDF ) ( 2023KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 低活化铁素体/马氏体耐热(RAFM)钢在强辐照条件下仍具有良好的力学性能、导热性及抗热膨胀性,被认为是目前核聚变反应堆的首选结构材料,但是其较低的高温蠕变抗力和抗辐照性能极大限制了其使用温度,进而影响了核聚变反应堆的转换效率。纳米级MX型碳氮化物作为钢中重要的强化相,在高温下仍具有良好的稳定性,能够有效阻碍位错的运动及湮灭,可以有效提高钢的高温蠕变性能。此外,纳米级MX型碳氮化物的析出还可以增加钢中的界面比,而界面是良好的缺陷陷阱,可以有效诱捕辐照产生的离位原子、空位等点缺陷,从而提高钢的抗辐照性能,因此进一步增加钢中的MX型碳氮化物含量被认为是提升RAFM钢力学性能的有效途径。目前,提高RAFM钢中MX型碳氮化物强化最有效的方式主要有三种:氮化物强化工艺、形变热处理工艺(TMT)和Ti元素的添加工艺。三种工艺均能有效提高钢的高温拉伸及蠕变性能,但它们对钢综合力学性能的影响并不完全相同。氮化物强化工艺主要是通过降低钢中的C含量同时提高N含量,从而达到促进MX型碳氮化物析出的目的。但由于钢中的N含量较高,极易形成粗大的TaN夹杂,在低温条件下,钢的临界裂纹尺寸会大幅降低,TaN夹杂就会成为冲击过程的裂纹源,从而使钢的韧脆转变温度(DBTT)大幅升高。TMT工艺主要是将钢加热到奥氏体化温度以上进行保温,使钢中碳化物充分溶解,之后降温至M23C6型碳化物熔点以上,对钢引入较大的变形量,从而产生大量位错,促进MX型碳氮化物的形核。由于较高的固溶温度和较大的变形量,TMT处理后,钢具有较大的晶粒尺寸和较高的应力状态,从而使钢的冲击性能大幅降低。Ti元素添加工艺主要是在钢中引入Ti元素,Ti是良好的碳氮化物形成元素,在钢中极易与C、N元素结合形成MX型碳氮化物,从而提高钢中的MX型碳氮化物含量。与氮化物强化及TMT工艺不同,Ti元素添加后,钢中并未出现粗大的夹杂物及过大尺寸的晶粒,其表现出最佳的综合力学性能,与传统RAFM钢相比,其高温力学性能及室温冲击性能均大幅增加,仅DBTT值略有升高。本文从强化机理出发,重点介绍了近年来MX型碳氮化物强化RAFM钢的发展情况,并分析对比了三种MX型碳氮化物强化工艺对钢综合力学性能的影响。此外本文还指出了RAFM钢未来发展过程中可能遇到的其他问题,并对今后的研发重点进行了简要的分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周金华
申勇峰
关键词:  RAFM钢  MX型碳氮化物  氮化物强化  TMT工艺  Ti元素    
Abstract: Reduced activated ferrite/martensitic (RAFM) heat-resistant steel is considered to be the primary option of the structural materials for nuclear fusion energy reactors, due to its favorable mechanical properties, thermal conductivity and thermal expansion resistance under strong irradiation conditions. However, the low temperature creep resistance and radiation resistance of RAFM steels greatly limit the service temperature and conversion efficiency of the nuclear fusion reactors. The MX type carbonitrides is an important strengthening phase in steels, which have fine stability at high temperature, can effectively hinder the movement and annihilation of dislocations, and improve the high temperature creep properties of steel.In addition, the precipitation of MX type carbonitrides can also increase the interface ratio of steel. The interface is a good defect trap, which can effectively trap the point defects such as atoms and vacancies caused by irradiation, and improve the irradiation resistance of steel. Therefore, further increasing the content of MX type carbonitride in steel is considered to be an effective way to improve the mechanical properties of RAFM steel.Currently, there are three effective processes to improve the MX type carbonitrides content in RAFM steel: the nitride-strengthening process, the deformation heat treatment (TMT) process, and the Ti-addition process. All three processes can effectively improve the high temperature tensile and creep properties of steel, but the influence on the comprehensive mechanical properties of steel is not exactly same.The nitride-strengthening process mainly aims to promote the precipitation of MX type carbonitride by reducing the C content of steel and increasing the N content. However, due to the high N content, coarse TaN inclusions are easily formed in the steel. Under the low temperature conditions, the critical crack size of the steel would be greatly reduced, and TaN inclusions would become the crack source in the impact process and lead the ductile brittle transition temperature (DBTT) of steel increased substantially.The TMT process mainly heats the steel above the austenitizing temperature for heat preservation, making the carbide in the steel fully dissolved, then cools down the temperature to the melting point of the M23C6 type carbide and introduce a large amount of deformation to the steel, thereby generating a large number of dislocations and promoting the nucleation of MX type carbonitrides.Due to the high solid solution temperature and large deformation, after TMT treatment, the steel has a larger grain size and a higher stress state, which greatly reduces the impact performance of the steel. The Ti-addition process is mainly to introduce Ti element into steel. Ti is a good carbonitride forming element. It is very easy to combine with C and N elements to form MX type carbonitrides, thus increasing the content of MX type carbonitrides in steel.Unlike the nitride-streng-thening and TMT process, the Ti-addition process did not lead to coarse inclusions or excessive grain size in the steel, which shows the best comprehensive mechanical properties. Compared with the traditional RAFM steel, the high temperature mechanical properties and room temperature impact properties of the steel increase significantly, only the DBTT value increase slightly. Based on the strengthening mechanism, this paper mainly introduces the development of the MX type carbonitride reinforced RAFM steel in recent years,and the effects of three MX type carbonitrides reinforcement processes on the comprehensive mechanical properties of steel are also analyzed and compared. In addition, other problems that may be encountered in the future development of new types steels are listed, and a brief analysis of future research priorities is also carried out.
Key words:  RAFM steel    MX-type carbonitride    nitride strengthening    TMT process    Ti element
                    发布日期:  2019-05-21
ZTFLH:  TG14  
基金资助: 国家自然科学基金(51574079;U1430132)
通讯作者:  shenyf@smm.edu.cn   
引用本文:    
周金华, 申勇峰. 低活化铁素体/马氏体耐热钢中MX型碳氮化物强化研究进展[J]. 材料导报, 2019, 33(11): 1793-1800.
ZHOU Jinhua, SHEN Yongfeng. Progress of MX Type Carbonitride Reinforcement in Reduced Activated Ferrite/Martensitic Heat-resistant Steel. Materials Reports, 2019, 33(11): 1793-1800.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050035  或          http://www.mater-rep.com/CN/Y2019/V33/I11/1793
1 He W B, Chen C A, Wang J J, et al. Materials Review A: Review Papers,2015,29(9),101(in Chinese).
何伟波,陈长安,王佳佳,等.材料导报:综述篇,2015,29(9),101.
2 Bloom E E, Conn R W, Davis J W, et al. Journal of Nuclear Materials,1984,122(1),17.
3 Seki Y, Kikuchi M, Ando T, et al. Plasma Physics and Controlled Nuc-lear Fusion Research,1990,3,473.
4 Klueh R L, Maziasz P J. Metallurgical Transactions A,1989,20(3),373.
5 Klueh R L. Metallurgical Transactions A,1989,20(3),463.
6 Klueh R L, Corwin W R.Journal of Materials Engineering,1989,11(2),169.
7 Kohyama A, Hishinuma A, Gelles D S, et al. Journal of Nuclear Mate-rials,1996,233-237(1),138.
8 Kohno Y, Kohyama A, Hirose T, et al.Journal of Nuclear Materials,1999,271(3),145.
9 Lindau R, Möslang A, Rieth M, et al. Fusion Engineering & Design,2005,75(11),989.
10 He P, Yao W Z, Lv J M, et al. Materials Review A: Review Papers,2018,32(1),34(in Chinese).
何培,姚伟志,吕建明,等.材料导报:综述篇,2018,32(1),34.
11 Lv Z, Lu C Y, Zhang S H, et al. Acta Metallurgica Sinica,2012,48(6),649(in Chinese).
吕铮,卢晨阳,张守辉,等.金属学报,2012,48(6),649.
12 Huang Q, Baluc N, Dai Y, et al. Journal of Nuclear Materials,2013,442(1-3),S2.
13 Huang Q. Journal of Nuclear Materials,2014,455(1-3),649.
14 Banerjee S. Journal of Nuclear Materials,2014,455(1-3),217.
15 Chun Y B, Kang S H, Noh S, et al. Journal of Nuclear Materials,2014,455(1-3),212.
16 Tan L, Katoh Y, Tavassoli A A F, et al. Journal of Nuclear Materials,2016,479,515.
17 Baluc N, Gelles D S, Jitsukawa S, et al. Journal of Nuclear Materials,2007,s367-370(26),33.
18 Shankar V, Mariappan K, Sandhya R, et al. Transactions of the Indian Institute of Metals,2016,69(2),1.
19 Xin J P, Liu S J, Li C J, et al. Nuclear Science and Engineering,2016,36(4),487.
20 Gaganidze E, Aktaa J. Fusion Engineering and Design,2013,88(3),118.
21 Shen T L, Wang Z G, Yao C F, et al. Nuclear Instruments and Methods in Physics Research,2013,307(7),512.
22 Sawada K, Kubo K, Abe F.Metal Science Journal,2013,19(6),732.
23 Liu P P, Zhao M Z, Zhu Y M, et al. Journal of Alloys and Compounds,2013,579(23),599.
24 Li X G, Yan Q Z, Ge C C. Journal of Iron and Steel Research,2009,21(6),6(in Chinese).
黎兴刚,燕青芝,葛昌纯.钢铁研究学报,2009,21(6),6.
25 Li J, Liu J, Jiang B, et al. Metals & Materials International,2017,23,1.
26 Knezevic V, Sauthoff G, Vilk J, et al. ISIJ International,2002,42(12),1505.
27 Hirose T, Shiba K, Sawai T, et al. Journal of Nuclear Materials,2004,329(8),324.
28 Klueh R L, Sokolov M A, Hashimoto N. Journal of Nuclear Materials,2008,374(1-2),220.
29 Nishimura A, Nagasaka T, Inoue N, et al. Journal of Nuclear Materials,2000,283-287(283),677.
30 Ruan Y, Spätig P, Victoria M. Journal of Nuclear Materials,2002,s307-311(3),236.
31 Huang L X, Hu X, Yan W, et al. Atomic Energy Science and Technology,2013,47(b12),412(in Chinese).
黄礼新,胡雪,严伟,等.原子能科学技术,2013,47(b12),412.
32 Djebaili H, Zedira H, Djelloul A, et al. Materials Characterization,2009,60(9),946.
33 Panait C G, Bendick W, Fuchsmann A, et al. International Journal of Pressure Vessels and Piping,2010,87(6),326.
34 Sklenika V, Kuchaová K, Svoboda M, et al. Materials Characterization,2003,51(1),35.
35 Nie M, Zhang J, Huang F, et al. Heat Treatment of Metals,2013,38(11),40(in Chinese).
聂铭,张健,黄丰,等.金属热处理,2013,38(11),40.
36 Paul V T, Saroja S, Vijayalakshmi M. Journal of Nuclear Materials,2008,378(3),273.
37 Hamada K, Tokuno K, Tomita Y, et al. ISIJ International,2007,35(1),86.
38 Fernández P, Lancha A M, Lapena J, et al. Journal of Nuclear Mate-rials,2002,s307-311,495.
39 Miyata K, Sawaragi Y. Transactions of the Iron and Steel Institute of Japan,2001,41(3),281.
40 Zinkle S J, Boutard J L, Hoelzer D T, et al. Nuclear Fusion,2017,57(9),092005.
41 Laha K, Saroja S, Moitra A, et al. Journal of Nuclear Materials,2013,439(1-3),41.
42 Vanaja J, Laha K, Nandagopal M, et al. Journal of Nuclear Materials,2013,433(1-3),412.
43 Abe F, Araki H, Noda T. Mtallurgical Transactions A,1991,22(10),2225.
44 Tanaka H, Murata M, Abe F, et al. Materials Science and Engineering A,1997,s234-236,1049.
45 Tan L, Snead L L, Katoh Y. Journal of Nuclear Materials,2016,478,42.
46 Heintze C, Bergner F, Ulbricht A, et al. Journal of Nuclear Materials,2011,416(1),35.
47 Brinkman J A. Journal of Applied Physics,1954,25(8),961.
48 Seeger A K. In:Proceedings of Second United Nations International Conference on the Peaceful Uses of Atomic Energy. Geneva,1959,pp.250.
49 Puype A, Malerba L, Wispelaere N D, et al. Journal of Nuclear Mate-rials,2018,502(15),282.
50 Huang Q Y, Li C J, Li Y F, et al. Chinese Journal of Nuclear Science and Engineering,2007,27(1),41(in Chinese).
黄群英,李春京,李艳芬,等.核科学与工程,2007,27(1),41.
51 Liu P P, Zhao M Z, Zhu Y M, et al. Journal of Alloys and Compounds,2013,579(23),599.
52 Taneike M, Sawada K, Abe F. Metallurgical and Materials Transactions A,2004,35(4),1255.
53 Abe F, Taneike M, Sawada K. InternationalJournal of Pressure Vessels and Piping,2007,84(1-2),3.
54 Wu Z Q, Bai Y, Ma L T, et al. Iron and Steel,2015,50(5),1(in Chinese).
吴增强,白银,马龙腾,刘正东,等.钢铁,2015,50(5),1.
55 Abe F. Materials Science and Engineering A,2001,319,770.
56 Yan W, Hu P, Deng L, et al. Metallurgical and Materials Transactions A,2012,43(6),1921.
57 Zhou Q, Zhang W, Yan W, et al. Metallurgical and Materials Transactions A,2012,43(13),5079.
58 Wang H, Yan W, van Zwaag S, et al. ActaMaterialia 2017,134,143.
59 Baluc N, Gelles D S, Jitsukawa S, et al. Journal of Nuclear Materials,2007,s367-370(26),33.
60 Klueh R L, Hashimoto N, Maziasz P J. Journal of Nuclear Materials,2007,s367-370(26),48.
61 Hoffmann J, Rieth M, Commin L, et al. Nuclear Materials and Energy,2016,6,12.
62 Puype A, Malerba L, Wispelaere N D, et al. Journal of Nuclear Mate-rials,2017,494,1.
63 Zhang Y, Yu C, Zhou T, et al. Materials and Design,2015,88(11),675.
64 Baluc N. Plasma Physics and Controlled Fusion,2006,48(12B),B165.
65 Yin F, Tian L, Xue B, et al. Rare Metals,2011,30(1),497-500.
66 Zumrat, Li S Z, Sun F. Chinese Journal of Materials Research,2013,27(1),43(in Chinese).
祖木热提,李生志,孙锋.材料研究学报,2013,27(1),43.
67 Tan L, Snead L L, Katoh Y. Journal of Nuclear Materials,2016,478,42.
68 Luo F, Guo L, Jin S, et al. Journal of Nuclear Materials,2014,455(1-3),37.
[1] 王占雷, 向鑫, 闫晶, 郭亚昆, 朱开贵, 陈长安. 氘、氚与RAFM钢相容性研究进展[J]. 材料导报, 2019, 33(11): 1782-1786.
[2] 张文凤, 邹爱成, 刘运强, 叶东, 刘晓刚, 严伟. 新型多尺度碳氮化物强化马氏体耐热钢的稳定性[J]. 材料导报, 2018, 32(20): 3606-3611.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed