Please wait a minute...
材料导报  2019, Vol. 33 Issue (11): 1782-1786    https://doi.org/10.11896/cldb.18090029
  核材料 |
氘、氚与RAFM钢相容性研究进展
王占雷1,2, 向鑫2, 闫晶1, 郭亚昆2, 朱开贵1, 陈长安2
1 北京航空航天大学物理科学与核能工程学院,北京 100191
2 中国工程物理研究院材料研究所,江油 621908
Research Progress of Deuterium and Tritium Compatibility Issues on Reduced Activation Ferritic/Martensitic Steel
WANG Zhanlei1,2, XIANG Xin2, YAN Jing1, GUO Yakun2, ZHU Kaigui1, CHEN Chang’an2
1 School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191
2 Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908
下载:  全 文 ( PDF ) ( 1411KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 核聚变能是解决人类能源危机和环境问题最有效的途径,其主要是利用氘氚聚合释放的能量。磁约束聚变是目前最可能实现受控热核聚变的方法,但要实现长期且稳态的核聚变反应还面临着诸多挑战,其中材料的研究与开发是聚变堆能否商业化的关键。在服役过程中,包层结构材料不仅受到高热负荷及强腐蚀作用,还受到各种粒子如氘(D)、氚(T)、氦(He)等的轰击和D-T聚变反应产物高能中子的影响。目前,确定的候选结构材料主要有奥氏体不锈钢、低活化铁素体/马氏体(RAFM)钢、钒合金以及碳化硅复合材料四种。而RAFM钢因具有低活性、较低的热膨胀系数、较高的热导率、辐照环境下具有较好的几何稳定性被选为目前最具前景的结构材料。获得氘氚在RAFM钢中的输运参数是未来核数据库建立的基础和前提,近几年关于氘在RAFM钢中输运行为的研究较多,然而不同研究者所得的结果差别很大,且缺乏实际的氚实验的基础数据。因此建立实验测试标准十分必要。RAFM钢主要以板条马氏体结构为主,具有较高的氘、氚渗透率,极易造成氘氚燃料的损失及氚放射性污染。因此,必须减少或避免RAFM钢与氘氚的直接接触。在RAFM钢表面制备一定厚度的阻氚涂层是实现氚自持最有效的途径之一。目前,国内外研究较多的阻氚涂层为Al2O3涂层,其阻氚因子可达103,且已实现工程化应用。此外,RAFM钢在服役过程中产生的辐照损伤及表面状态变化必然会影响氘氚的输运行为,主流观点认为辐照产生的缺陷会增加氘氚在金属材料中的滞留量,当材料中氘原子浓度达到10-6时,塑韧性下降,产生氢脆,尤其对于氚,衰变产生的He-3原子浓度达到10-9时,还会引发更严重的氦脆。除了制备阻氚涂层外,最近的研究多致力于通过成分调控及改善热处理工艺来提高RAFM钢的抗氢性能及抗辐照性能。本文归纳了氘氚在RAFM钢中行为的研究进展,分别对RAFM钢中氘氚渗透和滞留行为及其对力学性能的影响等进行介绍,分析了RAFM钢开发面临的问题并展望其前景,期望为RAFM钢数据库的建立以及服役于聚变堆的工程可行性提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王占雷
向鑫
闫晶
郭亚昆
朱开贵
陈长安
关键词:      RAFM钢  渗透  力学性能    
Abstract: Nuclear fusion achieved through deuterium and tritium is the most effective way to solve the energy crisis and environmental issues. The magnetic confinement fusion is currently the most promising steady-state research reactor. However, there are many challenges to be solved including materials design and development which is essential to the commercial application of fusion energy. The blanket structural materials are not only subjected to high heat load and severe corrosion in the service process, but also bombarded by various particles such as deuterium (D), tritium (T), helium (He) and high energy neutrons produced by D-T fusion reaction. Up to now there are primarily four kinds of candidate structural materials which are austenitic stainless steel, low activation ferrite/martensitic (RAFM) steel, vanadium alloy and SiC composites, respectively. RAFM steels have been proposed as the most promising candidate structural materials for the experimental fusion reactor ITER owing to their better swelling resistance, improved irradiation resistance and favorable termo-physical properties. It is fundamental to obtain the transport parameters of deuterium and tritium through RAFM steels for constructing the nuclear database. Although the transport behavior of deuterium in RAFM steels has been researched widely in recent years, the results obtained by different researc-hers are very different, and data on tritium are scared. Therefore, it is very necessary to establish the experimental test standard. RAFM steel has high deuterium and tritium permeability due to its lath martensitic structure, leading to fuel loss and tritium pollution. Thus direct contact between RAFM steel and hydrogen isotopes must be reduced or avoided. The preparation of tritium permeation barrier (TPB) on the surface of RAFM steel is one of the most effective ways to realize tritium self-sustainment. At present, Al2O3 coating has attracted much attention as typical candidate TPB materials for its self-healing capacity and low permeation reduction factor (PRF), in addition to the realization of engineering application. Moreover, the radiation damage and surface state change of RAFM steel during service will inevitably affect the transport behavior of deuterium and tritium. It is generally believed that the defects produced by irradiation will increase the retention of deuterium and tritium in metal materials. As a result of hydrogen accumulation, a degradation of mechanical performance like the structure strength and ductility would occur for the materials. Especially for tritium, when the He-3 produced by tritium decay reaches ppb level, helium embrittlement will be appeared. In addition to TPB, recent studies have focused on improving the hydrogen resistance and irradiation resistance of RAFM steel by controlling composition and improving heat treatment process. This article reviews the research progress of deuterium and tritium behaviors in RAFM steels. And the permeation and retention behaviors of deuterium and tritium in RAFM steels, as well as their effects on mechanical properties are presented respectively. The issues involved in the development of RAFM steel are analyzed and its prospect is looked forward. It is expected that this will offer reference for the database establishment of RAFM steel and the feasibility of serving in the fusion reactor.
Key words:  deuterium (D)    tritium (T)    RAFM steel    penetration    mechanical properties
                    发布日期:  2019-05-21
ZTFLH:  TG142  
基金资助: 国家磁约束核聚变能发展研究专项项目(2015GB109006);国家自然科学基金(51471154;11775194)
通讯作者:  chenchangan@caep.cn   
作者简介:  王占雷,2014年6月毕业于合肥工业大学,获得工学学士学位。现为北京航空航天大学物理学院与中国工程物理研究院材料研究所联合培养博士研究生,在陈长安研究员及朱开贵教授的指导下进行研究。目前主要研究领域为氢同位素与低活化马氏体钢的相互作用。陈长安,中国工程物理研究院材料研究所研究员、博士研究生导师。长期从事材料中氢同位素及氦的行为、聚变堆相关氚工艺以及涉氚材料等科学技术研究,先后参与了我国“磁约束核聚变能发展I期实施规划”、“‘十二五’及‘十三五’磁约束能发展专项规划”、“中国磁约束聚变能发展路线图”的编制工作,系中国聚变工程实验堆(CFETR)总体设计组成员。分别以专项项目组技术骨干、专项项目一级课题负责人及专项项目负责人(首席科学家)身份先后参与我国参试ITER产氚实验包层(HCCB TBM)氚处理系统概念设计及关键技术研究、CFETR氚燃料循环工厂系统概念设计及关键技术研究、CFETR包层材料中氚循环技术研究等大型科技攻关。获部委级科技进步奖4项(均排名第一),发明专利2项,发表科技论文30余篇。
引用本文:    
王占雷, 向鑫, 闫晶, 郭亚昆, 朱开贵, 陈长安. 氘、氚与RAFM钢相容性研究进展[J]. 材料导报, 2019, 33(11): 1782-1786.
WANG Zhanlei, XIANG Xin, YAN Jing, GUO Yakun, ZHU Kaigui, CHEN Chang’an. Research Progress of Deuterium and Tritium Compatibility Issues on Reduced Activation Ferritic/Martensitic Steel. Materials Reports, 2019, 33(11): 1782-1786.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090029  或          http://www.mater-rep.com/CN/Y2019/V33/I11/1782
1 Huang Q Y, Yu J N, Wan F R, et al.Chinese Journal of Nuclear Science and Engineering,2004,24(1),56(in Chinese).
黄群英,郁金南,万发荣,等.核科学与工程,2004,24(1),56.
2 Kurtz R J, Alamo A, Lucon E, et al. Journal of Nuclear Materials,2009,386(5),411.
3 He P, Yao W Z, Lv J M, et al. Materials Review A:Review Papers,2018,32(1),34(in Chinese).
何培,姚伟志,吕建明,等.材料导报:综述篇,2018,32(1),34.
4 Laha K, Saroja S, Moitra A, et al. Journal of Nuclear Materials,2013,439(1-3),41.
5 Jung P. Fusion Technology,1998,33(1),63.
6 Chen C A, Liu L B, Wang B, et al. Fusion Engineering and Design,2016,112,569.
7 Levchuk D, Koch F, Maier H, et al. Journal of Nuclear Materials,2004,328(2),103.
8 Wang B, Liu L B, Xiang X, et al. Journal of Nuclear Materials,2016,470,30.
9 Noh S J, Lee S K, Byeon W J, et al. Fusion Engineering and Design,2014,89(11),2726.
10 Zhou H S, Hirooka Y, Ashikawa N, et al. Journal of Nuclear Materials,2014,455(1-3),470.
11 Aiello A, Ricapito I, Benamati G. Fusion Science and Technology,2002,41,872.
12 Yasuhisa O, Makoto K, Junya O, et al. Fusion Engineering and Design,2012,87(5-6),580.
13 Lee S K, Yun S H, Han G J, et al. Current Applied Physics,2014,14(10),1385.
14 Ueda Y, Lee H T, Peng H Y, et al. Fusion Engineering and Design,2012,87(7-8),1356.
15 Oya Y, Kobayashi M, Osuo J, et al. Fusion Engineering and Design,2012,87(5-6),580.
16 Swansiger W A, Bastasz R. Journal of Nuclear Materials,1979,85(79),335.
17 Ouyang Y J, Yu G, Hu L, et al. Surface Engineering,2013,29(4),312.
18 Dolinsky Y N, Zouev Y N, Lyasota I A, et al. Journal of Nuclear Mate-rials,2002,307(2),1484.
19 Otsuka T, Shimada M, Kolasinski R, et al. Journal of Nuclear Materials,2011,415(1),S769.
20 Fedorov A V, Til S V, Magielsen A J, et al. Fusion Engineering and Design,2014,448(1-3),139.
21 Fan D J, Lu G D, Zhang G K, et al. Acta Metallurgica Sinica,2018,54(4),519(in Chinese).
范东军,陆光达,张桂凯,等.金属学报,2018,54(4),519.
22 Schliefer F, Liu C, Jung P. Journal of Nuclear Materials,2000,283-287,540.
23 Fujita H, Chikada T, Mochizuki J, et al. Fusion Engineering and Design,2018,133,95.
24 Terasawa M, Fukushima K, Nakahigashi S, et al. Japanese Journal of Applied Physics,1986,25(7),1106.
25 Xu Y P, Lu T, Li X C, et al. Nuclear Inst & Methods in Physics Research B,2016,388,5.
26 Yao Z, Liu C, Jung P, et al. Fusion Science and Technology,2005,48,1285.
27 Xiang X, Wang X L, Zhang G K, et al. International Journal of Hydrogen Energy,2015,40(9),3697.
28 Janda D, Fietzek H, Galetz M, et al. Intermetallics,2013,41,51.
29 Zhang M, Xu B J, Ling G P, et al. Applied Surface Science,2015,331(1),1.
30 Zhang G K. Theoretical studies on hydrogen behavior in α-Al2O3 tritium permeation barrier material. Ph.D. Thesis, University of Science and Technology of China,China,2014(in Chinese).
张桂凯.α-Al2O3阻氚涂层材料中氢行为的理论研究.博士学位论文,中国科学技术大学,2014.
31 Wang P X, Song J S. Helium in materials and the permeation of tritium, National Defense Industry Press, China,2002(in Chinese).
王佩璇,宋家树.材料中的氦及氚渗透,国防工业出版社,2002.
32 Wang Z L, Chen C A, Song Y Q, et al. Fusion Engineering and Design,2018,126,139.
33 Noh S J, Kim H S, Byeon W J, et al. Journal of Nuclear Materials,2017,490,1.
34 Yakushiji K, Lee H T, Oya M, et al. Physica Scripta,2016,2016(T167),014067.
35 Ogorodnikova O V, Zhou Z, Sugiyama K, et al. Nuclear Fusion,2017,57,1.
36 Yamauchi Y, Gotoh K, Nobuta Y. Fusion Engineering and Design,2010,85(10),1838.
37 Ito T, Yamauchi Y, Hino T, et al. Journal of Nuclear Materials,2011,417(1-3),1147.
38 Shinoda N, Yamauchi Y, Nobuta Y, et al. Fusion Engineering and Design,2014,89(7-8),921.
39 Shinoda N, Yamauchi Y, Nobuta Y. Journal of Nuclear Materials,2015,463,1001.
40 Beghini M, Benamati G, Bertini L, et al. Journal of Nuclear Materials,2001,288,1.
41 Yagodzinskyy Y, Malitckii E, Ganchenkova M, et al. Journal of Nuclear Materials,2014,444,435.
42 Wang Z L, Zhu K G, Xiang X, et al. Fusion Engineering and Design,2018,137,15.
43 Hara S, Abe T, Enoeda M, et al. Journal of Nuclear Materials,1998,S258-263(4),1280.
44 Liu C, Klein H, Jung P. Journal of Nuclear Materials,2004,335(1),77.
45 Zhu S, Zhang C, Yang Z, et al. Nuclear Engineering and Technology,2017,49(8),1748.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 梁斌斌, 郭炜, 刘振兴, 杨洪广. 高活性氚钛靶膜固氦特性研究[J]. 材料导报, 2019, 33(z1): 153-157.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[11] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[12] 崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
[13] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[14] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[15] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed