Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 115-120    https://doi.org/10.11896/j.issn.1005-023X.2017.012.024
  材料研究 |
矿物掺合料对聚羧酸减水剂与水泥相容性的影响*
李志坤1,2, 彭家惠1, 杨再富3
1 重庆大学材料科学与工程学院, 重庆400045;
2 重庆市建筑科学研究院, 重庆400016;
3 重庆建工建材物流有限公司, 重庆 401122
Effect of Mineral Admixtures on the Compatibility of Polycarboxylate Superplasticizer and Cement
LI Zhikun1,2, PENG Jiahui1, YANG Zaifu3
1 College of Materials Science & Engineering, Chongqing University, Chongqing 400045;
2 Chongqing Construction Science Research Institute, Chongqing 400016;
3 Chongqing Construction Engineering Building Materials & Logistics Co.LTD, Chongqing 401122
下载:  全 文 ( PDF ) ( 1481KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高性能减水剂与水泥适应性差会导致混凝土流动性和坍落度损失过快,矿物掺合料将影响高性能减水剂与水泥的相容性。对比研究矿物掺合料种类和掺量对水泥净浆、砂浆和混凝土流动性的影响;采用TOC法测试了矿物掺合料对聚羧酸减水剂吸附量的影响;分析了矿物掺合料影响聚羧酸减水剂与水泥相容性的机理。结果表明,粉煤灰和矿渣对提高水泥净浆流动性具有一定的叠加效应,可用胶砂减水率的加权平均值进行量化;硅灰对水泥浆体流动性的不利影响远大于粉煤灰和矿渣的辅助减水分散作用,不利于改善聚羧酸减水剂与水泥的相容性;粉煤灰和矿渣增加聚羧酸减水剂在水泥体系中的吸附量;粉煤灰和矿渣对聚羧酸减水剂在混凝土中的减水分散效果有改善作用但不显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李志坤
彭家惠
杨再富
关键词:  掺合料  聚羧酸减水剂  叠加效应  流动性  相容性  有效吸附量    
Abstract: Quick loss of fluidity and slump is commonly happened in concrete due to poor compatibility between superplasticizer and cement, which can be affected by the use of mineral admixtures. The effects of fly ash, slag and silica fume on fluidity of cement pastes, mortars and concretes were studied, and their effects on the content of polycarboxylate superplasticizer adsorbed on cement were tested by TOC method. Then, the compatibility between polycarboxylate superplasticizer and cement affected by fly ash, slag and silica fume was analysed. The results show that the beneficial impact of fly ash combined with slag on the fluidity of cement paste could be regarded as a superposition effect and quantified by the weighted average of the water-reducing rate. Silica fume has an adverse effect which is greater than the additional water-reducing effect of fly ash and slag on the fluidity of cement paste, which is unfavourable to the compatibility between polycarboxylate superplasticizer and cement. Fly ash and slag increase the effective adsorption content, resulting in good dispersion or high water reducing by polycarboxylate superplasticizer. There exists additional water-reducing effect induced by fly ash and slag in concrete but not obviously.
Key words:  admixture    polycarboxylate superplasticizer    superimposed effect    fluidity    compatibility    effective absorption content
               出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TU528.04  
基金资助: *国家自然科学基金面上项目(51272295);重庆市建筑材料与制品工程技术研究中心能力提升项目(CSTC2014PT-GC50001)
通讯作者:  彭家惠:通讯作者,男,1962年生,博士,教授,主要从事建筑材料研究 E-mail:pengjh@cqu.edu.cn   
作者简介:  李志坤:男,1976年生,博士研究生,教授级高工,主要研究方向为混凝土外加剂的制备及应用技术 E-mail:lzk.cqu@163.com
引用本文:    
李志坤, 彭家惠, 杨再富. 矿物掺合料对聚羧酸减水剂与水泥相容性的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 115-120.
LI Zhikun, PENG Jiahui, YANG Zaifu. Effect of Mineral Admixtures on the Compatibility of Polycarboxylate Superplasticizer and Cement. Materials Reports, 2017, 31(12): 115-120.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.024  或          http://www.mater-rep.com/CN/Y2017/V31/I12/115
1 Ma B, Ma M, Shen X, et al. Compatibility between a polycarboxylate superplasticizer and the belite-rich sulfoaluminate cement: Setting time and the hydration properties [J]. Construct Build Mater,2014,51:47.
2 Bahurudeen A, Marckson A V, Kishore A, et al. Development of sugarcane bagasse ash based Portland pozzolana cement and evaluation of compatibility with superplasticizers[J]. Construct Build Mater,2014,68:465.
3 Nagrockiene D, Pundienè I, Kicaite A. The effect of cement type and plasticizer addition on concrete properties[J]. Construct Build Mater,2013,45:324.
4 Mardani-Aghabaglou A, Boyacc1 O C, Hosseinnezhad H, et al. Effe-ct of gypsum type on properties of cementitious materials containing high range water reducing admixture[J]. Cem Concr Compos,2016,68:15.
5 Mardani-Aghabaglou A, Tuyan M, Yc1lmaz G, et al. Effect of di-fferent types of superplasticizer on fresh, rheological and strength properties of self-consolidating concrete[J]. Construct Build Mater,2013,47:1020.
6 Alonso M M, Palacios M, Puertas F. Compatibility between polycarboxylate-based admixtures and blended-cement pastes[J]. Cem Concr Compos,2013,35(1):151.
7 Sun Yuan, Sun Zhenping. Study on the effect of admixtures on the compatibility between cement and water reducer[J]. Cement,2003(6):7(in Chinese).
孙媛, 孙振平. 混合材对水泥与减水剂适应性的影响研究[J]. 水泥,2003(6):7.
8 Burgos-Montes O, Alonso M M, Puertas F. Viscosity and water demand of limestone-and fly ash-blended cement pastes in the presence of superplasticisers[J]. Construct Build Mater,2013,48:417.
9 Wan Huiwen, Tang Chungang, Zhang Yu. Effects of mineral admixtures and superplasticizer on rhelogical performance of cement paste[J]. J Wuhan University of Technology,2007,29(12):11(in Chinese).
万惠文, 唐春刚, 张瑜. 矿物掺合料与高效减水剂对浆体流变性的影响[J]. 武汉理工大学学报,2007,29(12):11.
10 Schröfl C, Gruber M, Plank J. Preferential adsorption of polycarboxylate superplasticizers on cement and silica fume in ultra-high performance concrete (UHPC)[J]. Cem Concr Res,2012,42(11):1401.
11 Tkaczewska E. Effect of the superplasticizer type on the properties of the fly ash blended cement[J]. Construct Build Mater,2014,70:388.
12 Toledano-Prados M, Lorenzo-Pesqueira M, González-Fonteboa B, et al. Effect of polycarboxylate superplasticizers on large amounts of fly ash cements[J]. Construct Build Mater,2013,48:628.
13 Huang Haibin, Ma Changquan, Wang Zhengshan. Study of suita-bility of naphthalene efficient superplasticizer with cement and fly ash mixture[J]. Coal Ash,2008,20(2):38(in Chinese).
黄海滨, 马长全, 王振山. 萘系高效减水剂与水泥、粉煤灰等掺合料适应性的试验研究[J]. 粉煤灰,2008,20(2):38.
14 Wang Shichao, Yu Liming, Hu Xiaowei. Analysis of factors of affecting suitability of concrete additives and cement admixture[J]. Coal Ash,2007,19(4):47(in Chinese).
王士超, 俞黎明, 虎孝伟. 混凝土外加剂与水泥、掺合料适应性的影响因素分析[J]. 粉煤灰,2007,19(4):47.
15 Burgos-Montes O, Palacios M, Rivilla P, et al. Compatibility between superplasticizer admixtures and cements with mineral additions[J]. Construct Build Mater,2012,31:300.
16 Hallal A, Kadri E H, Ezziane K, et al. Combined effect of mineral admixtures with superplasticizers on the fluidity of the blended cement paste[J]. Construct Build Mater,2010,24(8):1418.
17 Ezziane K, Ngo T T, Kaci A. Evaluation of rheological parameters of mortar containing various amounts of mineral addition with polycarboxylate superplasticizer[J]. Construct Build Mater,2014,70:549.
18 Jalal M, Pouladkhan A, Harandi O F, et al. Comparative study on effects of class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete[J]. Construct Build Mater,2015,94:90.
[1] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[2] 司雯, 曹明莉, 冯嘉琪. 纤维增强水泥基复合材料的流动性与流变性研究进展[J]. 材料导报, 2019, 33(5): 819-825.
[3] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[4] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[5] 都蓉蓉, 张雄, 顾明东, 季涛. 聚羧酸减水剂与增强组分的复合效应及原理[J]. 材料导报, 2019, 33(14): 2461-2466.
[6] 付晓刚, 张金权, 秦博, 马浩然, 龙斌. 氢化锆与高温钠的相容性研究[J]. 材料导报, 2019, 33(11): 1801-1804.
[7] 李 款,潘友强,张 辉,陈李峰,张 健. 钢桥面铺装用环氧沥青相容性研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1534-1540.
[8] 何廷树, 杨仁和, 徐一伦, 李同新, 房佳斌. 掺加改性淀粉制备聚羧酸减水剂及其应用[J]. 《材料导报》期刊社, 2018, 32(4): 646-649.
[9] 阮世超, 罗丹丹, 郝亚, 白雪, 陈岑. 氧化铱/聚多巴胺/层粘连蛋白仿生涂层的制备[J]. 材料导报, 2018, 32(24): 4351-4356.
[10] 何伟, 周予启, 王强. 铜渣粉作为混凝土掺合料的研究进展[J]. 材料导报, 2018, 32(23): 4125-4134.
[11] 唐芮枫, 王子明, 何欢, 张琳, 蔡扬扬, 王杰. 聚羧酸系减水剂复配β-环糊精对高贝利特硫铝酸盐水泥性能的影响[J]. 材料导报, 2018, 32(22): 4000-4005.
[12] 钟红荣, 张岩, 包红, 方艳, 吴婷芳, 朱勇, 张小宁, 徐水. 丝素/明胶/壳聚糖支架材料的构建及表征[J]. 材料导报, 2018, 32(22): 3954-3960.
[13] 桑练勇, 胡志德, 晏华, 代军, 张寒松. 可降解材料聚碳酸亚丙酯和聚乳酸的溶度参数与相容性[J]. 材料导报, 2018, 32(22): 3948-3953.
[14] 刘晓, 赖光洪, 许谦, 管佳男, 王子明, 崔素萍, 兰明章. 基于抑制粘土负作用效果的聚羧酸减水剂的设计合成及机理[J]. 材料导报, 2018, 32(22): 3880-3884.
[15] 代晓军, 杨西荣, 王昌, 徐鹏, 赵曦, 于振涛. 生物医用可降解锌基合金的研究进展[J]. 材料导报, 2018, 32(21): 3754-3759.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed