Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 22080144-9    https://doi.org/10.11896/cldb.22080144
  无机非金属及其复合材料 |
煤矸石粉混凝土冻融损伤模型与劣化机制
关虓1,*, 龙行1, 丁莎2, 张鹏鑫1
1 西安科技大学建筑与土木工程学院,西安 710054
2 西安建筑科技大学土木工程学院,西安 710054
Freeze-thaw Damage Model and Deterioration Mechanism of Coal Gangue Powder Concrete
GUAN Xiao1,*, LONG Hang1, DING Sha2, ZHANG Pengxin1
1 School of Architectural and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
2 School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710054, China
下载:  全 文 ( PDF ) ( 17378KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为促进寒区煤矸石在混凝土中的利用,通过快速冻融实验,研究了冻融循环作用下,不同取代率的机械-微波活化的煤矸石粉混凝土(Coal gangue powder concrete,CGPC)冻融损伤规律,依据波速损失对损伤层厚度进行修正,建立了基于修正后损伤层厚度的冻融损伤方程,并对冻融作用下CGPC的孔结构参数、微观形貌和水化产物进行了测试分析。结果表明:10%和20%掺量的活化煤矸石粉(Activated coal gangue powder,ACGP)能提高混凝土力学性能和抗冻性能,掺量达到30%后的抗冻性能提高效果显著减弱,力学性能有所降低;冻融300次20%和0%掺量组抗压强度分别下降了16.4%和26.5%,质量损失率分别为1.77%、4.03%,相对动弹性模量分别为68.940%、91.321%,损伤层厚度分别达到了11.9 mm和17.4 mm;基于波速差异修正后的损伤层厚度能更准确地表征CGPC损伤程度;ACGP的微粒填充作用以及二次水化作用提升了CGPC的强度和抗冻性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关虓
龙行
丁莎
张鹏鑫
关键词:  混凝土  煤矸石  掺合料  冻融损伤  损伤机制  损伤模型    
Abstract: To promote the utilization of coal gangue in concrete in cold regions, this work studied the freeze-thaw damage law of mechanically-microwave activated coal gangue powder concrete (CGPC) with different substitution rates under freeze-thaw cycles. The damage layer thickness was corrected for ultrasonic wave velocity loss, and a freeze-thaw damage equation based on the modified damage layer thickness was established. The pore structure parameters, micro morphology, and hydration products of CGPC under freeze-thaw were tested and analyzed. The results show that 10% and 20% of activated coal gangue powder (ACGP) can improve the mechanical properties and frost resistance of concrete, when the content reaches 30%, the improvement effect of frost resistance is obviously weakened, and the mechanical properties are somewhat reduced. After freezing and thawing for 300 times, the compressive strength of 20% and 0% content group decreased by 16.4% and 26.5% respectively, the mass loss was 1.77% and 4.03% respectively, the relative dynamic elastic modulus was 68.940% and 91.321% respectively, and the thickness of damaged layer reached 11.9 mm and 17.4 mm respectively. The thickness of damaged layer modified based on ultrasonic velocity difference can more accurately represent the damage degree of CGPC. The particle filling effect and secondary hydration of ACGP improve the strength and frost resistance of CGPC.
Key words:  concrete    coal gangue    admixture    freeze thaw damage    damage mechanism    damage model
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TU528.01  
基金资助: 国家自然科学基金(51808443);陕西省自然科学基础研究计划面上项目(2023-JC-YB-225)
通讯作者:  *关虓,西安科技大学建筑与土木工程学院副教授、硕士研究生导师。目前主要从事绿色混凝土材料及固废物资源化利用、混凝土结构耐久性、工程结构检测鉴定及加固等方面的研究工作。主持国家级、省部级科研项目5项,发表论文50余篇,其中SCI/EI检索20余篇。guanxiao@xust.edu.cn   
引用本文:    
关虓, 龙行, 丁莎, 张鹏鑫. 煤矸石粉混凝土冻融损伤模型与劣化机制[J]. 材料导报, 2024, 38(16): 22080144-9.
GUAN Xiao, LONG Hang, DING Sha, ZHANG Pengxin. Freeze-thaw Damage Model and Deterioration Mechanism of Coal Gangue Powder Concrete. Materials Reports, 2024, 38(16): 22080144-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080144  或          http://www.mater-rep.com/CN/Y2024/V38/I16/22080144
1 Cao Z, Cao Y D, Dong H J, et al. International Journal of Mineral Processing, 2016, 146, 23.
2 Li C, Zhao L, Hui X M, et al. Chinese Journal of Environmental Engineering, 2017, 11(7), 4349 (in Chinese).
李超, 赵亮, 惠晓梅, 等. 环境工程学报, 2017, 11(7), 4349.
3 Wang A G, Liu P, Mo L, et al. Journal of Building Engineering, 2021, 45, 103616.
4 Zhang C S, Deng Y X, Wu Q S. Chinese Journal of Environmental Engineering, 2013, 7(8), 3170 (in Chinese).
张长森, 邓育新, 吴其胜. 环境工程学报, 2013, 7(8), 3170.
5 Zhou S X, Dong J L, Yu L H, et al. Journal of Materials in Civil Engineering, 2019, 31(4), 4019022.
6 Chen J X, Guan X, Zhu M Y, et al. Advances in Civil Engineering, 2021, 2021, 5436482.
7 Guan X, Chen J X, Zhu M Y, et al. Journal of Materials Research and Technology, 2021, 14, 2799.
8 Liu Z, Duan K R, Zhou M, et al. Materials Reports, 2024, 38(10), 88(in Chinese).
刘泽, 段开瑞, 周梅, 等. 材料导报, 2024, 38(10), 88.
9 Yu L L, Xia J W, Chen M W, et al. Construction and Building Materials, 2022, 338, 127626.
10 Xin J, Zhou M, Zhang Q, et al. Bulletin of the Chinese Ceramic Society, 2015, 34(9), 2696 (in Chinese).
邢军, 周梅, 张倩. 硅酸盐通报, 2015, 34(9), 2696.
11 Ma H Q, Zhu H G, Wu C, et al. Powder Technology, 2020, 368, 112.
12 Bai C, Ma F, Liu S X, et al. Non-Metallic Mines, 2017, 40(2), 38 (in Chinese).
白春, 麻凤海, 刘书贤, 等. 非金属矿, 2017, 40(2), 38.
13 Sun C, Chen L L, Xiao J Z, et al. Construction and Building Materials, 2022, 333, 127405.
14 Wang Y Z, Tan Y, Wang Y C, et al. Construction and Building Materials, 2020, 233, 117166.
15 Qiu J, Zhou Y, Vatin N I, et al. Construction and Building Materials, 2020, 264. 120720.
16 Guan X, Chen J X, Qiu J S, et al. Construction and Building Materials, 2020, 246, 118437.
17 Bai J W, Zhao Y R, Shi J N, et al. Construction and Building Materials, 2022, 327, 126885,
18 Liu K, Zou C, Zhang X, et al. Journal of Building Engineering, 2020, 34, 101822.
19 Elimbi A, Tchakoute H K, Njopwouo D. Construction and Building Materials, 2011, 25(6), 2805.
20 Li J, Zhang L, Wang H, et al. Materials Reports, 2024, 38(11), 170(in Chinese)
李静, 张灵, 王昊, 等. 材料导报, 2024, 38(11), 170.
21 Du P, Yao Y, Wang L, et al. Advanced Materials Research, 2014, 936, 1342.
22 Li L J, Liu Q F. Journal of the Chinese Ceramic Society, 2022, 50(8), 1 (in Chinese).
李林洁, 刘清风. 硅酸盐学报, 2022, 50(8), 1.
23 Guan X, CHEN J X, Zhu M Y, Gao J, Ding S, et al. Materials Reports, 2023, 37(4), 95(in Chinese).
关虓, 陈霁溪, 朱梦宇, 等. 材料导报, 2023, 37(4), 95.
24 Kachanov L. Izvestia Akademii Nauk SSSR, 1958, 8, 26.
25 Yu S W. Damage mechanics, Tsinghua University Press, China, 1997, pp.20 (in Chinese).
余寿文. 损伤力学, 清华大学出版社, 1997, pp.20.
26 Wang Z X, Jin L, Chen P X, et al. Materials Reports, 2025, 39(5), 24020073(in Chinese).
王张翔, 金浪, 陈培鑫, 等. 材料导报, 2025, 39(5), 24020073.
27 Li B, Wang K Y, Mao J Z, et al. The Civil Engineering Journal, 2015, 24, 1.
28 Li L J, Liu Q F, Tang L P, et al. Construction and Building Materials, 2021, 302, 124291.
29 Huang X M, Rao J M, Du K, et al. Mining Safety & Environmental Protection, 2023, 50(6), 92(in Chinese).
黄学满, 饶吉来, 杜凯. 矿业安全与环保, 2023, 50(6), 92.
30 Mehta P K, Monteiro P. Concrete: microstructure, properties, and material, Prentice-Hall, USA, 2001, pp.42.
[1] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[2] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[3] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[4] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[5] 梁艳玲, 霍润科, 宋战平, 穆彦虎, 秋添, 宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型[J]. 材料导报, 2024, 38(8): 22080206-7.
[6] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[7] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[8] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[9] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[10] 杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
[11] 杨淑雁, 徐盼盼, 宋俊杰, 陈小龙. 基于离差最大化-灰色关联的修补混凝土配合比评价[J]. 材料导报, 2024, 38(6): 22040151-7.
[12] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[13] 姚未来, 刘元雪, 孙涛, 赵宏刚, 穆锐, 雷屹欣. 采用局域共振超材料混凝土提升结构消波防护性能:综述和展望[J]. 材料导报, 2024, 38(5): 23080236-14.
[14] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[15] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed