Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 23060206-7    https://doi.org/10.11896/cldb.23060206
  特种工程材料 |
新型高强钢板在结构抗接触爆炸中的应用
方新宇1,2, 徐干成2,*, 魏迎奇1, 刘彦泉2, 袁伟泽2, 周俊鹏2
1 中国水利水电科学研究院岩土工程研究所,北京 100038
2 中国人民解放军95899部队,北京 100068
Research on the Application of a New Type of High Strength Steel Plate in Structures Resistance to Contact Explosion
FANG Xinyu1,2, XU Gancheng2,*, WEI Yingqi1, LIU Yanquan2, YUAN Weize2, ZHOU Junpeng2
1 Geotechnical Research Institute, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
2 Unit 95899 of PLA, Beijing 100068, China
下载:  全 文 ( PDF ) ( 24622KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究NFB700E1高强钢板对钢筋混凝土结构抗震塌性能的提升效果,开展了五组组合结构抗接触爆炸试验(以Q345普通钢板为对照组),并基于试验结果,建立了较为真实的数值仿真模型,通过多组数值仿真算例,计算出钢筋混凝土-防震塌钢板组合结构的相当不震塌系数,量化了防震塌钢板对钢筋混凝土抗震塌能力的提升幅度。结果表明:抗爆试验中,随着钢筋混凝土靶板厚度减少,其爆坑等效直径、爆坑深度和防震塌钢板的最大变形量均呈增大趋势;通过对比爆坑深度和钢板最大变形量等参数,不断迭代优化,得到了吻合程度较高的有限元数值仿真模型;计算得到钢筋混凝土-防震塌钢板组合结构和钢筋混凝土的相当不震塌系数,其中NFB700E1高强钢板8 mm厚时相当不震塌系数约为0.141,6 mm厚时约为0.159,相较于钢筋混凝土(0.475),相当不震塌系数分别提高了70.3%和66.5%;相较于Q345普通钢板(0.230),相当不震塌系数分别提高了38.7%和30.9%。本工作建立的数值仿真模型可拓展延伸到更多工况,为其他防护工程抗震塌研究提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方新宇
徐干成
魏迎奇
刘彦泉
袁伟泽
周俊鹏
关键词:  钢筋混凝土  高强钢板  防震塌  数值仿真  有限元分析    
Abstract: In order to study the enhancing effect of NFB700E1 high-strength steel plate on the anti-collapse performance of reinforced concrete structures, five sets of contact explosion tests on the composite structure were carried out(including a control group of Q345 ordinary steel plate), while an effective numerical simulation model was established based on the test results. Through lots of numerical simulation tests, the equivalent non-collapsing coefficient (ENC for short) of composite structures are calculated, by which the enhancement range of anti-collapsing steel plate is quantified. The results show that, in the anti-explosion tests, the equivalent diameter of blast pit, the depth of blast pit and the maximum deformation of anti-collapsing steel plate all grow up with the decrease of the thickness of reinforced concrete target plate. By comparing the depth of blast hole and the maximum deformation of steel plate in both simulation and tests, the finite element numerical simulation model was continuously iterative optimized. The ENC of compose structures and reinforced concrete were calculated. For the NFB700E1 steel plates of different thickness, the ENC were about 0.141(8 mm) and 0.159(6 mm), which were 70.3% and 66.5% higher than that of reinforced concrete (ENC=0.475), respectively. Compared to the Q345 ordinary steel plate (ENC=0.230), the increases were respectively 38.7% and 30.9%. The numerical simulation model established in this work can be extended to more working conditions and provide reference for the research of anti-collapse in other protection engineering.
Key words:  reinforced concrete    high strength steel plate    anti-collapse    numerical simulation    finite element analysis
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  O383.2  
通讯作者:  *徐干成,现为中国人民解放军95899部队教授级高级工程师,博士研究生导师。1992年10月西安理工大学岩土工程专业博士毕业,1996年3月同济大学地下建筑与工程专业完成博士后研究。目前主要从事地下防护工程专业科研、设计及研究工作。发表论文110余篇,获军队及省部级科技奖10余项。 xugancheng_xgc@163.com   
作者简介:  方新宇,2012年6月于浙江大学获得工学学士学位,2014年12月、2018年12月于空军工程大学获得工学硕士学位和工学博士学位。现为中国人民解放军95899部队助理研究员,在徐干成教授和魏迎奇教授的指导下进行博士后研究。目前主要研究领域为防护工程、防护材料。
引用本文:    
方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
FANG Xinyu, XU Gancheng, WEI Yingqi, LIU Yanquan, YUAN Weize, ZHOU Junpeng. Research on the Application of a New Type of High Strength Steel Plate in Structures Resistance to Contact Explosion. Materials Reports, 2024, 38(5): 23060206-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23060206  或          http://www.mater-rep.com/CN/Y2024/V38/I5/23060206
1 Zheng Q P, Qian Q H, Zhou Z S, et al. Engineering Mechanics, 2003, 20(3), 47 (in Chinese).
郑全平, 钱七虎, 周早生, 等. 工程力学, 2003, 20(3), 47.
2 Zheng Q P, Zhou Z S, Qian Q H, et al. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(8), 1393(in Chinese).
郑全平, 周早生, 钱七虎, 等. 岩石力学与工程学报, 2003, 22(8), 1393.
3 Hulton F G, Gough M S. In: Proceedings of the 9th International Symposium of Interaction of the Effects on Munitions with Structures. Berlin, Germany:ISIEMS, 1999, pp.330.
4 Wang M Y, Zhang S M, Guo S B. Explosion and Shock Waves, 2002, 22(1), 40(in Chinese).
王明洋, 张胜民, 国胜兵. 爆炸与冲击, 2002, 22(1), 40.
5 Liu J C, Fang Q, Zhang Y D, et al. Acta Armamentarii, 2004, 25(6), 773 (in Chinese).
柳锦春, 方秦, 张亚栋, 等. 兵工学报, 2004, 25 (6), 773.
6 Hu J S, Yang X M, Zhou Z S, et al. Explosion and Shock Waves, 2005, 25(2), 157(in Chinese).
胡金生, 杨秀敏, 周早生, 等. 爆炸与冲击, 2005, 25(2), 157.
7 Ge T, Pan Y F, Tan K K, et al. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1), 3553.
葛涛, 潘越峰, 谭可可, 等. 岩石力学与工程学报, 2007, 26(S1), 3553.
8 Zhang X B, Yang X M, Chen Z Y, et al. Journal of Tsinghua University (Science and Technology), 2006, 46(6), 765(in Chinese).
张想柏, 杨秀敏, 陈肇元, 等. 清华大学学报(自然科学版), 2006, 46(6), 765.
9 Han G J, Cheng G L, Yang J Y, et al. Protective Engineering, 2013, 35(6), 13(in Chinese).
韩国建, 程国亮, 杨进勇, 等. 防护工程, 2013, 35(6), 13.
10 Wang W, Yang J C, Wang J H, et al. Explosion and Shock Waves, 2020, 40(12), 11(in Chinese).
汪维, 杨建超, 汪剑辉, 等. 爆炸与冲击, 2020, 40(12), 11.
11 Yang J C, Wang J H, Chen L, et al. Acta Armamentarii, 2021, 42(1), 133(in Chinese).
杨建超, 汪剑辉, 陈力, 等. 兵工学报, 2021, 42(1), 133.
12 Wei J Q, Li L, Wang S H, et al. Explosion and Shock Waves, 2022, 42(4), 1(in Chinese).
魏久淇, 李磊, 王世合, 等. 爆炸与冲击, 2022, 42(4), 1.
13 Research report on physical and mechanical properties of NFB700E1 steel plate. Nanjing Iron & Steel Group Co. Ltd., China, 2019(in Chinese).
NFB700E1钢板物理力学性能研究报告. 南京钢铁集团有限公司, 2019.
14 Wang C, Wang W J, Ning J G. Chinese Journal of' Theoretical and Applied Mechanics, 2015, 47(4), 672(in Chinese).
王成, 王万军, 宁建国. 力学学报, 2015, 47(4), 672.
15 Li X L, Zhang S T, Li M Y, et al. Journal of China Coal Society, 2016, 41(S2), 419.
李祥龙, 张松涛, 李明扬, 等. 煤炭学报, 2016, 41 (S2), 419.
16 Bibiana M L, Ricardo D A. Mecanica Computational, 2008(25), 1999.
17 Elshenawy T, Li Q M. International Journal of Impact Engineering, 2013, 54, 130.
18 Li C. Study on failure mechanics and explosion-proof method for cylindrical shell under internal explosion. Master's Thesis, Huaqiao University, China, 2016 (in Chinese).
李超. 柱面网壳结构在内爆炸下的失效机理和防爆方法. 硕士学位论文, 华侨大学, 2016.
19 Qian Q H, Wang N Q, Sun N G, et al. Calculation principle of protective structure, Engineer Corps Engineering College, Nanjing, China, 1981, pp. 75(in Chinese).
钱七虎, 王年桥, 孙乃光, 等. 防护结构计算原理, 南京: 工程兵工程学院, 1981, pp. 75.
20 Hu J S, Yang K Z, Dong J, et al. Protective Engineering, 2016, 38(3), 35(in Chinese).
胡金生, 杨科之, 董军, 等. 防护工程, 2016, 38(3), 35.
[1] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[2] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[3] 徐宁, 杨恒, 熊传胜, 崔征, 蒋鹏, 刘璨. 钢筋混凝土环境中负载型阻锈剂的研究进展[J]. 材料导报, 2024, 38(2): 22050296-14.
[4] 魏广帅, 汪维, 杨建超, 高伟亮. POZD涂覆钢板加固钢筋混凝土板抗爆性能研究[J]. 材料导报, 2023, 37(21): 22030007-8.
[5] 陈守东, 陈敬琪, 李杰, 孙建, 卢日环. 复合成形轧制铜极薄带变形局部化的晶体塑性有限元模拟[J]. 材料导报, 2023, 37(2): 21050240-10.
[6] 陈守东, 卢日环, 孙建, 李杰. 异步冷轧少晶铜薄带局部变形的CP-FE模拟[J]. 材料导报, 2023, 37(14): 21120214-10.
[7] 孟祥晖, 冯琼, 张云升, 乔宏霞, 谢晓扬. 盐渍土环境下钢筋混凝土腐蚀劣化行为及竞争失效分析[J]. 材料导报, 2023, 37(14): 22010281-10.
[8] 商怀帅, 柴鑫. 往复荷载下锈蚀钢筋与混凝土粘结性能的试验研究[J]. 材料导报, 2023, 37(1): 21030106-6.
[9] 李斌, 周薇. CFRP管约束混凝土柱轴压性能试验及有限元分析研究[J]. 材料导报, 2022, 36(Z1): 22040146-6.
[10] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[11] 乔国斌, 乔宏霞, 路承功. 兰州地铁地下水环境中钢筋混凝土通电锈蚀机理研究[J]. 材料导报, 2022, 36(19): 21010008-6.
[12] 张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1): 20100075-9.
[13] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[14] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[15] 鞠学莉, 吴林键, 刘明维, 张洪, 李婷婷. 考虑氯离子侵蚀维度的钢筋混凝土码头服役寿命预测[J]. 材料导报, 2021, 35(24): 24075-24080.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed