Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23110280-7    https://doi.org/10.11896/cldb.23110280
  金属与金属基复合材料 |
螺纹短收尾表面折叠形成机理及滚压工艺参数仿真
林忠亮1,2,3, 张振峰2,3, 许学石1, 李浩楠1, 唐伟2,3, 白清顺1,*
1 哈尔滨工业大学机电工程学院,哈尔滨 150001
2 天津市紧固连接技术企业重点实验室,天津 300300
3 航天精工股份有限公司,天津 300300
Simulation of the Mechanism of Folding Formation on the Surface of Short End Thread and Rolling Process Parameters
LIN Zhongliang1,2,3, ZHANG Zhenfeng2,3, XU Xueshi1, LI Haonan1, TANG Wei2,3, BAI Qingshun1,*
1 School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
2 Tianjin Key Laboratory of Fastening Technology, Tianjin 300300, China
3 Aerospace Precision Products Co., Ltd., Tianjin 300300, China
下载:  全 文 ( PDF ) ( 3684KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 短收尾螺纹螺栓具有结构紧凑、质量轻、连接可靠等优点,在航空航天领域中被广泛使用。然而在螺栓加工时,收尾区域容易产生折叠缺陷,严重影响螺栓的疲劳寿命。因此需要开展螺纹短收尾表面折叠形成机理及工艺参数影响的研究。首先,建立了螺纹及其收尾滚压的有限元数值仿真模型,分析了短收尾折叠缺陷的形成过程,揭示了螺纹短收尾表面折叠的形成机理。之后,探究了收尾滚压工艺对收尾折叠量的影响,构建了滚压工艺参数-折叠量数学回归模型,并对滚压工艺参数进行了优化。研究结果表明:螺纹短收尾表面折叠主要出现在加工后期,滚丝轮收尾对螺栓螺纹收尾圆弧过渡区域产生挤压作用是造成折叠的主要原因。随着滚压加工的进行,过渡部分厚度越来越小,材料剧烈变形,会进一步导致折叠缺陷的加重。基于构建的滚压工艺参数-折叠量数学模型,分析发现进给量对折叠量的影响显著,随着其取值的增加,收尾折叠呈现先减小后增大的变化趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林忠亮
张振峰
许学石
李浩楠
唐伟
白清顺
关键词:  短收尾螺纹  折叠  滚压工艺  数值仿真    
Abstract: The bolts with short end thread are widely used in the aerospace industry due to their advantages of compact structure, light weight, and reliable connection. However, during the processing of bolt, the end area is prone to producing folding defect, which seriously affects the fatigue life of the bolt. Therefore, it is necessary to conduct research on the mechanism of surface folding formation and the influence of process parameters on the short end of threads. Firstly, a numerical simulation model with finite element was established on the thread and its end rolling process, and the forming process of short end folding defects was analyzed. Correspondingly, the folding formation mechanism was revealed. Afterwards, the influence of the effect of the end rolling process on the folding size was explored, and a mathematical regression model was constructed between rolling process parameter and folding size. The rolling process parameters were also optimized. The research results indicate that the surface folding of short end threads mainly occurs in the later stage of bolt processing, which is caused by the extrusion effect of the end rolling wheel on the transition area of the thread end-arc region in bolt. As the processing progresses, the thickness of the transition area becomes smaller and the material undergoes severe deformation, which can further lead to the aggravation of folding defects. Based on the mathematical model between rolling process parameter and folding size, it is indicated that the feed rate impacts most significantly the folding size. And as the folding size increases, the final folding shows a variation tendency of first decreasing and then increasing.
Key words:  short end thread    folding    rolling process    numerical simulation
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TG131.3  
  TG376.3  
基金资助: 天津市紧固连接技术企业重点实验室开放课题(TKLF2022-01-B-03)
通讯作者:  *白清顺,哈尔滨工业大学教授、博士研究生导师。1998年,哈尔滨工业大学机械工程专业,获工学学士学位;2000年,哈尔滨工业大学机械制造及其自动化学科,获工学硕士学位;2004年,哈尔滨工业大学机械制造及其自动化学科,获工学博士学位。发表学术论文200余篇,获得国家发明专利授权20余项。主要研究方向为超精密加工与微纳制造、超洁净制造理论与技术、精密机械设计与制造。Qshbai@hit.edu.cn   
作者简介:  林忠亮,2009年毕业于天津理工大学,获得工学学士学位。2014年毕业于南开大学,获得工程硕士学位。现为哈尔滨工业大学机电工程学院在读博士研究生、航天精工股份有限公司研究员级高级工程师。目前主要研究领域为紧固件的研发、制造、检测等。
引用本文:    
林忠亮, 张振峰, 许学石, 李浩楠, 唐伟, 白清顺. 螺纹短收尾表面折叠形成机理及滚压工艺参数仿真[J]. 材料导报, 2024, 38(22): 23110280-7.
LIN Zhongliang, ZHANG Zhenfeng, XU Xueshi, LI Haonan, TANG Wei, BAI Qingshun. Simulation of the Mechanism of Folding Formation on the Surface of Short End Thread and Rolling Process Parameters. Materials Reports, 2024, 38(22): 23110280-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23110280  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23110280
1 Zhao Q Y, Chen S R, Huang H, et al. Heat Treatment of Metals, 2017, 42(10), 203(in Chinese).
赵庆云, 程思锐, 黄宏, 等. 金属热处理, 2017, 42(10), 203.
2 O'brien M, Metcalfe R. Journal of Failure Analysis and Prevention, 2009, 9(2), 171.
3 Mushtaq S, Sheikh N A. IOSR Journal of Mechanical and Civil Engineering, 2013, 7(1), 12.
4 Liu M, Ji Z, Bao L, et al. Materials, 2022, 15(8), 2747.
5 Talu S, Saglam H, Kus R, et al. CIRP Journal of Manufacturing Science and Technology, 2020, 31, 334.
6 Jiang Y, Lyu X B, Wang Z, et al. In: China Aviation Society Youth Science and Technology Forum. Nanchang, 2022, pp.749(in Chinese).
江莹, 吕兴彬, 王智, 等. 第十届中国航空学会青年科技论坛论. 南昌, 2022, pp.749.
7 Zhang D W, Liu B K, Zhao S D. Materials, 2019, 12(10), 1716.
8 Wang Z, Wang F, Chen R F, et al. Oil Field Equipment, 2020, 49(5), 36(in Chinese).
王哲, 万夫, 陈瑞峰, 等. 石油矿场机械, 2020, 49(5), 36.
9 Zhang S, Zhang D, Zhao S, et al. Chinese Journal of Aeronautics, 2023, 36(3), 471.
10 Zhang S, Fan S, Zhao S, Wang Y. In: IOP Conference Series: Materials Science and Engineering. Bristol, 2019, pp.012004.
11 Wang D, Lu X X, Zhao J W, et al. Journal of Mechanical Strength, 2022, 44(5), 1075(in Chinese).
王栋, 鲁新羲, 赵静雯, 等. 机械强度, 2022, 44(5), 1075.
12 Wang K, Zhang X B, Xiao Q, et al. Modern Manufacturing Engineering, 2022(4), 9(in Chinese).
王锴, 张晓斌, 肖琪, 等. 现代制造工程, 2022(4), 9.
13 Furukawa A, Hagiwara M. Mechanical Engineering Journal, 2015, 2(4), 14-00293.
14 Zhang S, Zhang D, Jiang H, et al. Journal of Materials Research and Technology, 2022, 19, 230.
15 Wu T Y, Li X F, Wang W C, et al. Modern Manufacturing Engineering, 2022(11), 153(in Chinese).
吴同一, 黎向锋, 王文超, 等. 现代制造工程, 2022(11), 153.
16 Zhang Y, Hu Z, Guo L. Metals, 2021, 11(3), 503.
17 Giorleo L, Cartapani M. Journal of the Institution of Engineers(India): Series C, 2021, 103, 403.
18 Domblesky J P, Feng F. Journal of Materials Processing Technology, 2002, 121(2-3), 341.
19 Domblesky J P, Feng F. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2002, 216(4), 507.
20 Wang S W, Wen A L, Bing S J, et al. Chinese Journal of Computation Mechanics, 2008, 25(S1), 113(in Chinese).
王生武, 温爱玲, 邴世君, 等. 计算力学学报, 2008, 25(S1), 113.
21 Gong S Y, Wang W J, Xie X L. Mechanical Engineering & Automation, 2019(3), 150(in Chinese).
龚三元, 王文江, 谢小澜. 机械工程与自动化, 2019(3), 150.
[1] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[2] 夏进军, 李洁, 张雨萌, 张育新. 折纸结构及其特性的工程应用策略[J]. 材料导报, 2021, 35(11): 11196-11207.
[3] 陈方, 姚卫星, 吴富强. 复合材料T型加筋低速边缘冲击及剩余压缩强度的数值仿真分析[J]. 材料导报, 2020, 34(20): 20130-20136.
[4] 陈晓华, 赵长财, 国庆波, 李建超. 波纹管内高压成形焊接区变形特征研究*[J]. CLDB, 2017, 31(8): 140-144.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed