Please wait a minute...
材料导报  2021, Vol. 35 Issue (11): 11196-11207    https://doi.org/10.11896/cldb.20030174
  高分子与聚合物基复合材料 |
折纸结构及其特性的工程应用策略
夏进军1,*, 李洁1, 张雨萌1, 张育新1,2,*
1 重庆大学艺术学院,重庆 401331;
2 重庆大学材料科学与工程学院,重庆 400044
A Tactical Review of the Engineering Application of Origami Structure and Its Characteristics
XIA Jinjun1,*, LI Jie1, ZHANG Yumeng1, ZHANG Yuxin1,2,*
1 College of Art, Chongqing University, Chongqing 401331, China;
2 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 8243KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在过去的十年中,随着折痕设计、力学建模和可展开制造技术的发展进步,各类折纸/剪纸结构及其应用迅速出现:应用于航空航天领域的可展天线、钻杆、太阳翼等,其折展比更优、质量体积比更小;应用于医疗技术领域的人造血管支架、微型抓手,实现了跨越空间进行手术的目标;将折纸结构应用于致动器,其可弯曲性能会承受或减轻一定的应力,可以用于穿戴辅助设备、电子设备;应用于能量吸收装置,可以提高装置承受破坏性负载时的能量吸收能力,如用于减轻汽车撞击、地震等伤害的各种装置。近期,折纸/剪纸结构及其特性在一些新兴技术设备的构造中有了新的突破:如在切割、折叠和屈曲中的应用,在可伸缩/可变形电子器件、机械/光学超材料、微米/纳米级生物传感器和执行器中的应用,更为显著的进展是将功能材料(单晶硅、形状记忆聚合物、储能材料、石墨烯等)部署到3D微纳米级折纸结构中。
本文首先概述了折纸基础知识——常见的折痕图案和数学定理,然后重点介绍了基于折纸/剪纸结构诸多特性的工程应用策略,最后探讨了其潜在研究方向及未来所要面临的挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏进军
李洁
张雨萌
张育新
关键词:  折纸  剪纸  折叠特性  超材料  功能材料    
Abstract: In the past decade, various origami/kirigami structures and applications have rapidly emerged with the continuous development of crease design, mechanical modeling and expandable manufacturing. For instance, as for aerospace field, origami/kirigami structures are regarded as a promising solution for the high requirements for stretch ratio or volume?to?mass ratio of planet rover components such as deployable antennas, drill pipes and solar wings, etc. In the field of medical technology, artificial blood vessel stents and micro grippers with these structures realize the operation across the space. Furthermore, researchers have also made uses of their good bendability and excellent energy absorbability, to endow actuators with bearability to some extent against external stress and consequently applicability to wear auxiliary equipment and electronic equipment, as well as to improve energy absorption capacity of various devices that are designed to mitigate damage caused by destructive impacts, e.g. automobile collision and earthquakes. Recently, studies on origami/kirigami structures and characteristics have achieved many breakthroughs in some emerging technology and equipment, such as cutting, folding and buckling processes, retractable/deformable electronics, mechanical/optical metamaterials, micro/nano biosensors and actuators. A more significant progress is the deployment of functional materials (single crystal silicon, shape memory polymers, energy storage materials, graphene, etc.) into well?designed 3D micro?/nano?scale origami structures.
This article first outlines the fundamental knowledge of origami?common crease patterns and mathematical theorems, and then summarizes of the engineering applications based on the various characteristics of origami/kirigami structures. It ends with a brief but prospective discussion on the potential research directions and the future challenges.
Key words:  origami    kirigami    folding characteristics    metamaterials    functional materials
               出版日期:  2021-06-10      发布日期:  2021-06-25
ZTFLH:  TS938.3  
  S219.05  
通讯作者:  *design@cqu. edu.cn; zhangyuxin@cqu.edu.cn   
作者简介:  夏进军,重庆大学艺术学院副教授、硕士研究生导师。2006年6月毕业于武汉理工大学艺术与设计学院,重庆大学汽车工程学院博士研究生。2010—2011年美国辛辛那提大学DAAP学院访问学者。先后担任重庆工业设计协会理事、重庆市科技青年联合会理事、重庆市学校艺术教育协会常务理事。主要从事工业设计的理论研究与实践工作。近年来,在EI、CSSCI、CSCD等期刊发表与设计相关的论文20余篇,获得国家专利10余项。张育新,重庆大学材料科学与工程学院教授、博士研究生导师。本科和硕士分别于2000年和2003年毕业于天津大学化工学院,2008年博士毕业于新加坡国立大学化学与生物分子工程系,随后继续在曾华淳教授课题组从事博士后研究直到2009年。主要的研究兴趣包括纳米材料的制备与应用;超级电容器电极材料的合成与形貌控制;光催化材料的先进设计及性能。在Nat. Chem.、JACS、Adv. Mater.、ACS Nano等期刊上共发表SCI论文190余篇。
引用本文:    
夏进军, 李洁, 张雨萌, 张育新. 折纸结构及其特性的工程应用策略[J]. 材料导报, 2021, 35(11): 11196-11207.
XIA Jinjun, LI Jie, ZHANG Yumeng, ZHANG Yuxin. A Tactical Review of the Engineering Application of Origami Structure and Its Characteristics. Materials Reports, 2021, 35(11): 11196-11207.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030174  或          http://www.mater-rep.com/CN/Y2021/V35/I11/11196
1 Waitukaitis S, Menaut R, Chen B, et al. Physical Review Letters,2015,114(5),055503.
2 Rafsanjani A, Akbarzadeh A, Pasini D. Advanced Materials,2015,27(39),5931.
3 Shan S, Kang S H, Raney J R, et al. Advanced Materials,2015,27(29),4296.
4 Schenk M, Guest S D. Proceedings of the National Academy of Sciences of the United States of America,2013,110(9),3276.
5 Schenk M, Viquerat A D, Seffen K A, et al. Journal of Spacecraft and Rockets,2014,51(3),762.
6 Chen Y, Peng R, You Z. Science,2015,349(6246),396.
7 Filipov E T, Tachi T, Paulino G H. Proceedings of the National Academy of Sciences of the United States of America,2015,112(40),12321.
8 Butler J, Morgan J, Pehrson N, et al. In: Proceedings of the Asme International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Charlotte, North Carolina,2016,pp.1.
9 Fuchs A, Sturdee M, Schoening J, et al.In: Nordichi'18: Proceedings of the 10th Nordic Conference on Human?Computer Interaction. Oslo, Norway,2018,pp.47.
10 Lee J C, Hudson S E, Tse E, et al.In: Uist 2008: Proceedings of the 21st Annual Acm Symposium on User Interface Software and Technology. Monterey, CA,2008,pp.287.
11 Lin C H, Tsai D S, Wei T C, et al. ACS Nano,2017,11(10),10230.
12 Qiao Q, Yuan J, Shi Y, et al. Journal of Mechanisms and Robotics?Transactions of the Asme,2017,9(1),011004.
13 Morikawa Y, Yamagiwa S, Sawahata H, et al. Advanced Healthcare Materials,2018,7(3),1701100.
14 Yan Z, Han M, Shi Y, et al. Proceedings of the National Academy of Sciences of the United States of America,2017,114(45),E9455.
15 Johnson M, Chen Y, Hovet S, et al. International Journal of Computer Assisted Radiology and Surgery,2017,12(11),2023.
16 Wang P, Meyer T A, Pan V, et al. Chem,2017,2(3),359.
17 Lyu C, Krishnaraju D, Konjevod G, et al. Scientific Reports,2014,4,5979.
18 Li S, Fang H, Sadeghi S, et al. Advanced Materials, 2019, 31(5),1805282.1.
19 Zadpoor A A. Materials Horizons,2016,3(5),371.
20 Na J H, Evans A A, Bae J, et al. Advanced Materials,2015,27(1),79.
21 Erickson S J, Prost R W, Timins M E. Radiology,1993,188(1),23.
22 Tachi T. Origami,2009,4(8),175.
23 Miura K, Kenky U K. Method of packaging and deployment of large membranes in space, Institute of Space and Astronautical Sciences, Janpan,1985.
24 Gioia F, Dureisseix D, Motro R, et al. Journal of Mechanical Design,2012,134(3),031003.
25 Wu W, You Z. Proceedings of the Royal Society a?Mathematical Physical and Engineering Sciences,2010,466(2119),2155.
26 Silverberg J L, Evans A A, McLeod L, et al. Science,2014,345(6197),647.
27 Ye W, Wei F, Yi J, et al. Journal of Mechanical Design, Transactions of the ASME,2017,139(9).
28 Gattas J M, Wu W, You Z. Journal of Mechanical Design, Transactions of the ASME,2013,135(11),111011.
29 Ma J, You Z. Journal of Applied Mechanics, Transactions ASME,2014,81(1),011003.
30 Onal C D, Wood R J, Rus D. IEEE/ASME Transactions on Mechatronics,2013,18(2),430.
31 Onal C D, Wood R J, Rus D, In: Proceedings?IEEE International Conference on Robotics and Automation. Shanghai, China,2011,pp.4608.
32 Heimbs S. Foldcore sandwich structures and their impact behaviour: An overview, Solid Mechanics and its Applications, Germany,2013,pp.491.
33 Xiang X M, Lu G, Ruan D, et al. Composite Structures,2017,182,209.
34 Nishiyama Y. International Journal of Pure and Applied Mathematics,2012,79(2),269.
35 Song Z, Ma T, Tang R, et al. Nature Communications,2014,5,3140.
36 Shen J, Lu G, Zhao L, et al. Engineering Structures,2013,55,56.
37 Heimbs S, Middendorf P, Kilchert S, et al. Applied Composite Materials,2007,14(5?6),363.
38 Fischer S, Heimbs S, Kilchert S, et al. SAMPE Europe,2009,256.
39 Heimbs S, Cichosz J, Kilchert S, et al. In: ICCM International Confe?rences on Composite Materials, Germany,2009.
40 Basily B B, Elsayed E A. International Journal of Materials and Product Technology,2004,21(1?3),169.
41 Sab K, Lebée A. International Journal of Solids and Structures,2010,47(18?19),2620.
42 Wei Z Y, Guo Z V, Dudte L, et al. Physical Review Letters,2013,110(21),215501.
43 Zhou X, Wang H, You Z. Thin?Walled Structures,2014,82,296.
44 Li T, Wang L. Composite Structures,2017,175,46.
45 Yoshimura Y. Report of the Institute of Science and Technology University of Tokyo,1955,5,179.
46 Han J, Yamazaki K, Nishiyama S. Structural and Multidisciplinary Optimization,2004,28(1),47.
47 Senda K, Oda T, Ohta S, et al. In: Collection of Technical Papers AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. United States,2006,pp.2595.
48 Guest S D, Pellegrino S. Journal of Applied Mechanics, Transactions ASME,1996,63(1),77.
49 Kresling B. In: 3rd International Meeting of Origami Science, Mathema?tics, and Education. PACIFIC GROVE, CA,2002,pp.197.
50 Hunt G W, Ario I. International Journal of Non?Linear Mechanics,2005,40(6),833.
51 Cai J G, Deng X W, Zhou Y, et al. Journal of Mechanical Design, Transactions of the ASME,2015,137(6),061406.
52 Lang R J. Origami Design Secrets: Mathematical Methods for an Ancient Art, CRC Press, US,2003.
53 Kuribayashi K, Tsuchiya K, You Z, et al. Materials Science and Engineering A,2006,419(1?2),131.
54 Lee D Y, Kim J S, Kim S R, et al. In: Proceedings of the Asme International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Portland,2014,pp.V06BT07A040.
55 Turner N, Goodwine B, Sen M. Proceedings of the Institution of Mechanical Engineers Part C?Journal of Mechanical Engineering Science,2016,230(14),2345.
56 Fei L J, Su J D. International Journal of Social, Behavioral, Educatio?nal, Economic, Business and Industrial Engineering,2013,7(1),113.
57 Marcellini P, Paolini E. Imagine Math,2012,57,241.
58 Lebée A. International Journal of Space Structures,2015,30(2),55.
59 Jiang Y K, Chen D S, Zhang H Y, et al. Bioinspiration & biomimetics,2020,15(2),026002.
60 Galloway K C, Becker K P, Phillips B, et al. Soft Robot,2016,3(1),23.
61 Wang J, Fei Y, Liu Z. Soft Robot,2019,6(4),532.
62 Lamoureux A, Lee K, Shlian M, et al. Nature Communications,2015,6(1),8092.
63 Reynolds W D, Jeon S K, Banik J A, et al. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Portland,2013,pp.V06BT07A043.
64 Lang R J. In: Proceedings of the 6th International Symposium on Non?photorealistic Animation and Rendering. Boston, United States,2008,pp.1.
65 Tian Y, Yang Y, Tao L, et al. In: 2016 IEEE International Conference on Information and Automation (ICIA). Minneapolis, MN,2016,pp.391.
66 Pauchet S, Vinot J L, Letondal C, et al. In: CHI 2019: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. Glasgow, Scotland, UK,2019,pp.1.
67 Wu R, Roberts P C E, Soutis C, et al. Acta Astronautica,2018,152,242.
68 Fang H, Zhang Y, Wang K W. Bioinspiration Biomimetics,DOI:10.1088/1748?3190/aa8448.
69 Li S, Chu J R, Li B Q, et al. ACS Applied Materials & Interfaces,2019,11(49),46157.
70 Li H, Wang W, Yang Y, et al. ACS Nano,2020,14(2),1560.
71 Taylor A, Miller M, Fok M, et al. Journal of Medical Devices, Transactions of the ASME,2016,10(2),020957.
72 Miyashita S, Guitron S, Yoshida K, et al. In: Proceedings?IEEE International Conference on Robotics and Automation. Royal Inst Technol, Ctr Autonomous Syst, Stockholm, SWEDEN,2016,pp.909.
73 Zarek M, Mansour N, Shapira S, et al. Macromolecular Rapid Communications,2017,38(2),1600628.
74 Whitesides G M. Angewandte Chemie?International Edition,2018,57(16),4258.
75 Liu H, Crooks R M. Journal of the American Chemical Society,2011,133(44),17564.
76 Francis K C, Rupert L T, Lang R J, et al. From crease pattern to pro?duct: Considerations to engineering origami?adapted designs, Amer Soc Mechanical Engineers, UK,2014.
77 Fernandes R, Gracias D H. Advanced Drug Delivery Reviews,2012,64(14),1579.
78 Randall C L, Gultepe E, Gracias D H. Trends in Biotechnology,2012,30(3),138.
79 Gutruf P, Rogers J A. Current Opinion in Neurobiology,2018,50,42.
80 Xu L, Shyu T C, Kotov N A. ACS Nano,2017,11(8),7587.
81 Hawkes E, An B, Benbernou N M, et al. Proceedings of the National Academy of Sciences of the United States of America,2010,107(28),12441.
82 Felton S, Tolley M, Demaine E, et al. Science,2014,345(6197),644.
83 Zhao Q, Qi H J, Xie T. Progress in Polymer Science,2015,49?50,79.
84 Leong T G, Randall C L, Benson B R, et al. Proceedings of the National Academy of Sciences of the United States of America,2009,106(3),703.
85 Tolley M T, Shepherd R F, Karpelson M, et al. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014). Chicago, IL,2014,pp.561.
86 Yakacki C M, Shandas R, Lanning C, et al. Biomaterials,2007,28(14),2255.
87 Behl M, Razzaq M Y, Lendlein A. Advanced Materials,2010,22(31),3388.
88 Sun J, Guan Q, Liu Y, et al. Journal of Intelligent Material Systems and Structures,2016,27(17),2289.
89 Lendlein A, Behl M, Hiebl B, et al. Expert Review of Medical Devices,2010,7(3),357.
90 Zhou J, Sheiko S S. Journal of Polymer Science Part B?Polymer Physics,2016,54(14),1365.
91 Wu J, Yuan C, Ding Z, et al. Scientific Reports,2016,6,24224,
92 Tang Y, Lin G, Yang S, et al. Advanced Materials,2017,29(10),UNSP 1604262.
93 Zhao Q, Zou W, Luo Y, et al. Science Advances,2016,2(1),UNSP e1501297.
94 Tibbits S. Architectural Design,2014,84(1),116.
95 Raviv D, Zhao W, McKnelly C, et al. Scientific Reports,2014,4,7422.
96 Mao Y, Yu K, Isakov M S, et al. Scientific Reports,2015,5,13616.
97 White T J, Broer D J. Nature Materials,2015,14(11),1087.
98 Bauhofer A A, Krodel S, Rys J, et al. Advanced Materials,2017,29(42),1703024.
99 Shepherd R F, Ilievski F, Choi W, et al. Proceedings of the National Academy of Sciences of the United States of America,2011,108(51),20400.
10 0 Wehner M, Truby R L, Fitzgerald D J, et al. Nature,2016,536(7617),451.
1 Pikul J H, Li S, Bai H, et al. Science,2017,358(6360),210.
2 Truby R L, Lewis J A. Nature,2016,540(7633),371.
3 Chen T, Bilal O R, Lang R, et al. Physical Review Applied,2019,11(6),064069.
4 Qiu Y, Park K. Advanced Drug Delivery Reviews,2001,53(3),321.
5 Chung B G, Lee K H, Khademhosseini A, et al. Lab on a Chip,2012,12(1),45.
6 Bian W, Liau B, Badie N, et al. Nature Protocols,2009,4(10),1522.
7 Ma C, Li T, Zhao Q, et al. Advanced Materials,2014,26(32),5665.
8 Gladman A S, Matsumoto E A, Nuzzo R G, et al. Nature Materials,2016,15(4),413.
9 Huang L, Jiang R, Wu J, et al. Advanced Materials,2017,29(7),UNSP 1605390.
11 0 Malachowski K, Breger J, Kwag H R, et al. Angewandte Chemie?International Edition,2014,53(31),8045.
1 Breger J C, Yoon C, Xiao R, et al. Acs Applied Materials & Interfaces,2015,7(5),3398.
2 Bassik N, Brafman A, Zarafshar A M, et al. Journal of the American Chemical Society,2010,132(46),16314.
3 Xu S, Yan Z, Jang K I, et al. Science,2015,347(6218),154.
4 Yan Z, Zhang F, Wang J, et al. Advanced Functional Materials,2016,26(16),2629.
5 Zhang Y, Yan Z, Nan K, et al. Proceedings of the National Academy of Sciences of the United States of America,2015,112(38),11757.
6 Tian B, Liu J, Dvir T, et al. Nature Materials,2012,11(11),986.
7 Bishop D, Pardo F, Bolle C, et al. Journal of Low Temperature Physics,2012,169(5?6),386.
8 Wood R J. American Scientist,2014,102(2),124.
9 Fan Z, Razavi H, Do J W, et al. Nature Materials,2009,8(8),648.
12 0 Blees M K, Barnard A W, Rose P A, et al. Nature,2015,524(7564),204.
1 Xu W, Qin Z, Chen C T, et al. Science Advances,2017,3(10),e1701084.
2 Kim B H, Lee J, Won S M, et al. ACS Nano,2018,12(5),4164.
3 Hanson Shepherd J N, Parker S T, Shepherd R F, et al. Advanced Functional Materials,2011,21(1),47.
4 Guo X, Li H, Ahn B Y, et al. Proceedings of the National Academy of Sciences of the United States of America,2009,106(48),20149.
5 Jamal M, Bassik N, Cho J H, et al. Biomaterials,2010,31(7),1683.
6 Zhang K, Jung Y H, Mikael S, et al. Nature Communications,2017,8(1),1782.
7 Yu X, Cheng H, Zhang M, et al. Nature Reviews Materials,2017,2(9),17046.
8 Jang H, Park Y J, Chen X, et al. Advanced Materials,2016,28(22),4184.
9 Ning X, Wang X, Zhang Y, et al. Advanced Materials Interfaces,2018,5(13),1800284.
13 0 Wood R, Nagpal R, Wei G Y. Scientific American,2013,308(3),60.
1 Baisch A T, Ozcan O, Goldberg B, et al. International Journal of Robo?tics Research,2014,33(8),1063.
2 Firouzeh A, Paik J. Journal of Mechanisms and Robotics,2015,7(2),1.
3 Fang J, Yuan J P, Wang M M, et al. Soft Robotics,2020,7(1),95.
4 He J H, Lin C H. patent, US10461204,2019.
5 Eidini M, Paulino G H. Science Advances,2015,1(8),1500224.
6 Kamrava S, Mousanezhad D, Ebrahimi H, et al. Scientific Reports,2017,7,46046.
7 Yasuda H, Yang J. Physical Review Letters,2015,114(18),185502.
8 Zhou X, Zang S, You Z. Proceedings of the Royal Society A: Mathema?tical, Physical and Engineering Sciences,2016,472(2191),20160361.
9 Virk K, Monti A, Trehard T, et al. Smart Materials and Structures,2013,22(8),084014.
14 0 Karagiozova D, Zhang J, Lu G, et al. International Journal of Impact Engineering,2019,129,80.
1 Liu S, Lu G, Chen Y, et al. International Journal of Mechanical Sciences,2015,99,130.
2 Zhang J, Karagiozova D, You Z, et al. International Journal of Mecha?nical Sciences,2019,153?154,194.
3 Gattas J M, You Z. Engineering Structures,2015,94,149.
4 Silverberg J L, Na J H, Evans A A, et al. Nature Materials,2015,14(4),389.
5 Fang H, Wang K W, Li S. Extreme Mechanics Letters,2017,17,7.
6 Müller E, Dra?ar C ˙, Schilz J, et al. Materials Science and Engineering A,2003,362(1?2),17.
7 Lin D, Li Q, Li W, et al. Journal of Biomedical Materials Research?Part B Applied Biomaterials,2010,92(2),430.
8 Mehrali M, Shirazi F S, Mehrali M, et al. Journal of Biomedical Mate?rials Research?Part A,2013,101(10),3046.
9 Ajdari A, Babaee S, Vaziri A. In: 11th International Conference on the Mechanical Behavior of Materials (ICM). Como, ITALY,2011,pp.219.
15 0 Bates S R G, Farrow I R, Trask R S. Materials and Design,2019,162,130.
1 Li G, Zhang Z, Sun G, et al. Thin?Walled Structures,2015,94,334.
2 Qi Y E, Zhang Y S, Fang Y, et al. Composites Part B: Engineering,2013,47,145.
3 Zhang Y, Lu M, Sun G, et al. Composite Structures,2015,132,393.
4 Cui L, Kiernan S, Gilchrist M D. Materials Science and Engineering A,2009,507(1?2),215.
5 Sun G, Li G, Hou S, et al. Materials Science and Engineering A,2010,527(7?8),1911.
6 An X, Gao Y, Fang J, et al. Thin?Walled Structures,2015,91,63.
7 Chen Y, Bai Z, Zhang L, et al. Thin?Walled Structures,2017,110,133.
8 Mohammadiha O, Ghariblu H. Structural and Multidisciplinary Optimization,2017,56(3),587.
9 Sun G, Xu F, Li G, et al. International Journal of Impact Engineering,2014,64,62.
16 0 Davoodi M M, Sapuan S M, Aidy A, et al. Materials and Design,2012,40,304.
1 Schuster P J. SAE Technical Papers,2006,DOI:10.4271/2006?01?0464.
2 Bartha T. AARMS,2003,2(2),293.
3 Li C, Lei H, Liu Y, et al. International Journal of Mechanical Sciences,2018,145,389.
4 Zhang Z, Lei H, Xu M, et al. Materials and Design,2019,178,107858.
5 Thota M, Li S, Wang K W. Physical Review B,2017,95(6),064307.
6 Pratapa P P, Suryanarayana P, Paulino G H. Journal of the Mechanics and Physics of Solids,2018,118,115.
7 Thota M, Wang K W. Journal of Sound and Vibration,2018,430,93.
8 Harne R L, Lynd D T. Smart Materials and Structures,2016,25(8),085031.
9 Lang R J. In: 12th Annual ACM Symposium on Computational Geometry. Pleasanton, CA,1996,pp.98.
[1] 孙磊, 孙俊, 高晓梅, 杨彪, 张晶, 周瑶. 基于超材料的微波宽带完美吸波体设计[J]. 材料导报, 2021, 35(12): 12014-12019.
[2] 张雨萌, 李洁, 夏进军, 张育新. 4D打印技术:工艺、材料及应用[J]. 材料导报, 2021, 35(1): 1212-1223.
[3] 方全海, 吴良沛, 董建峰. 多功能超表面的光传输特性研究进展[J]. 材料导报, 2020, 34(9): 9048-9054.
[4] 杨智为, 周涵. 基于分形几何思路的超材料结构设计:综述[J]. 材料导报, 2020, 34(21): 21052-21060.
[5] 王瑞瑞. 角蛋白基生物功能材料的研究现状与发展前景[J]. 材料导报, 2020, 34(21): 21199-21204.
[6] 史公初, 廖亚龙, 张宇, 苏博文, 王伟. 铜冶炼渣制备建筑材料及功能材料的研究进展[J]. 材料导报, 2020, 34(13): 13044-13049.
[7] 孙明娟, 刘光烜, 张淑媛, 李雪. 耐腐蚀吸波超材料的制备及应用[J]. 材料导报, 2019, 33(Z2): 613-616.
[8] 赵亚娟, 李宝毅, 马晨, 王东红, 王富生. 基于超材料的多频段微带滤波器[J]. 材料导报, 2019, 33(Z2): 70-72.
[9] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[10] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[11] 汪丽丽, 宋健, 梁加南, 李敏华. 手性超材料圆极化波吸收特性研究进展[J]. 材料导报, 2019, 33(3): 500-509.
[12] 王强, 王岩, 黄小忠, 熊益军, 张芬. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2): 363-367.
[13] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[14] 高海涛, 王建江, 侯永申, 李泽. 影响电阻膜型超材料吸波体吸收特性的材料参数[J]. 材料导报, 2018, 32(24): 4230-4234.
[15] 王丹彤,周涵,范同祥. 生物宽带反射结构色效应研究综述[J]. 材料导报, 2018, 32(19): 3465-3472.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed