Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9048-9054    https://doi.org/10.11896/cldb.19040232
  无机非金属及其复合材料 |
多功能超表面的光传输特性研究进展
方全海, 吴良沛, 董建峰
宁波大学信息科学与工程学院,宁波 315211
Progress in Optical Transmission Characteristics of Multi-functional Metasurfaces
FANG Quanhai, WU Liangpei, DONG Jianfeng
College of Information Science and Engineering, Ningbo University, Ningbo 315211, China
下载:  全 文 ( PDF ) ( 7845KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电磁集成技术在现代科学技术中发挥着核心作用,被认为是解决电磁设备日益增长的数据存储容量需求和信息处理速度需求的关键。其难点在于如何有效地将多种多样的功能集成在一个具有亚波长结构的器件中。诸多光子器件,如偏振分束器、平板聚焦透镜等已经被自然材料或者近年提出的超材料实现。但是由于这些材料具有较大的厚度,不便于光子器件的集成,使它们的应用大大受限。作为平面二维结构的超表面由于具有独特的电磁响应特性和强大的电磁波操控能力,已经在多功能器件设计领域得到了应用。本文从多功能超表面设计的理论出发,介绍了其研究背景并总结了近年来的研究进展,将其分为基于纯透射设计的、基于纯反射设计的以及基于反射、透射设计的三类多功能超表面。最后对未来多功能超表面的设计方向提出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方全海
吴良沛
董建峰
关键词:  光子器件  系统集成  超材料  超表面  多功能性    
Abstract: Electromagnetic integration technology plays a central role in modern science and technology because it is considered to be the key to address the growing demand for data storage capacity and information processing speed for electromagnetic devices. The difficulty lies in how to effectively integrate a wide variety of functions into a device with a sub-wavelength structure. Many photonic devices, such as polarizing beam splitters, flat focusing lenses, etc., have been implemented by natural materials or metamaterials proposed in recent years. However, due to the large thickness of these materials, it is inconvenient to integrate photonic devices, which greatly limits their application. The metasurface, as a planar two-dimensional structure, with unique electromagnetic response characteristics and powerful ability to manipulate electromagnetic waves, has been used in the field of multi-function device design. Based on the theory of multi-functional metasurface design, this paper introduces its research background and summarizes the research progress in recent years. It is divided into three types that are based on pure transmission design, based on pure reflection design and based on reflection and transmission design. Finally, the future design direction of multi-functional metasurface is suggested.
Key words:  photonic device    system integration    metamaterial    metasurface    multi-functional device
                    发布日期:  2020-04-27
ZTFLH:  TB34  
基金资助: 国家自然科学基金(61475079)
通讯作者:  dongjianfeng@nbu.edu.cn   
作者简介:  方全海,2017年毕业于铜陵学院,获得工学学士学位。现为宁波大学信息科学与工程学院研究生,由董建峰教授指导研究多功能超表面的光传输特性。
董建峰,宁波大学信息科学与工程学院教授、博士研究生导师。1986年南开大学物理系光学专业本科毕业,1989年中国科学院物理研究所固体物理专业硕士毕业后到宁波大学工作至今,2005年中国科学技术大学电磁场与微波技术专业博士毕业。2006年12月至2007年12月在美国能源部Ames国家实验室访学一年。目前主要从事超材料、手征介质波导等方面的研究工作。发表论文80余篇,包括Optics Express,Physical Review B,Progress In Electromagnetics Research (PIER)等。
引用本文:    
方全海, 吴良沛, 董建峰. 多功能超表面的光传输特性研究进展[J]. 材料导报, 2020, 34(9): 9048-9054.
FANG Quanhai, WU Liangpei, DONG Jianfeng. Progress in Optical Transmission Characteristics of Multi-functional Metasurfaces. Materials Reports, 2020, 34(9): 9048-9054.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040232  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9048
1 Kildishev A V, Shalaev V M. Science,2013,339(6125),1232009.
2 Zhu N, Wang Y T, Liu J, et al. Optics Express,2009,17(16),13418.
3 Fan P Y, Chettiar U K, Cao L Y, et al. Nature Photonics,2012,6(6),380.
4 Veselago V G. Soviet Physics Uspekhi,1968,10(4),509.
5 Grimberg R. Materials Science & Engineering B,2013,178(19),1285.
6 Sun S, Yang K Y, Wang C M, et al. Nano Letters,2012,12(12),6223.
7 Xu H X, Tang S, Ma S, et al. Scientific Reports,2016,6,38255.
8 Pors A, Nielsen M G, Bernardin T, et al. Light: Science & Applications,2014,3,e197.
9 Shitrit N, Hasman E. Science,2013,340(6133),724.
10 Aieta F, Kats M A, Genevet P, et al. Science,2015,347(6228),1342.
11 Chen K, Feng Y, Monticone F, et al. Advanced Materials,2017,29(17),1606422.
12 Zheng G, Mühlenbernd H, Kenney M, et al. Nature Nanotechnology,2015,10(4),308.
13 Wang Q, Rogers E T F, Gholipour B, et al. Nature Photonics,2016,10(1),60.
14 Huang C, Zhang C L, Yang J N, et al. Advanced Optical Materials,2017,5(22),1700485.
15 Yu N, Genevet P, Kats M A, et al. Science,2011,334(6054),333.
16 Wan X, Shen X, Luo Y, et al. Laser & Photonics Reviews,2014,8(5),757.
17 Ma H F, Tang W X, Cheng Q, et al. Applied Physics Letters,2014,105(8),081908.
18 Wen D D, Chen S M, Yue F, et al. Advanced Optical Materials,2016,4(2),321.
19 Ling Y H,Huang L R, Hong W, et al. Optics Express,2017,25(24),29812.
20 Lin J, Mueller J P B, Wang Q, et al. Science,2013,340(6130),331.
21 Berini P. Advances in Optics & Photonics,2009,1(3),484.
22 Lee G Y, Yoon G, Lee S Y, et al. Nanoscale,2018,10(9),4237.
23 Sun S, He Q, Xiao S, et al. Nature Materials,2012,11(5),426.
24 Tang S, Cai T, Xu H, et al. Applied Sciences,2018,8(4),555.
25 Zhao Y, Cao X, Gao J, et al. Optics Express,2016,24(10),11208.
26 Qi Z, Gong J, Oh C H. Physical Review A,2010,81(2),023608.
27 Zhang Z, Yan X, Liang L J, et al. Carbon,2018,132,529.
28 Peng L, Jiang X, Li S M. Nanoscale Research Letter,2018,13,385.
29 Ding F, Deshpande R, Bozhevolnyi S I. Light: Science & Applications,2018,7(4),17178.
30 Zhang C, Yue F D, Wen M, et al. ACS Photonics,2017,4(8),1906.
31 Cai T, Tang S W, Wang G M. et al. Advanced Optical Materials,2017,5(2),1600506.
32 Cai T, Wang G M, Zhang X F, et al. IEEE Transactions on Antennas and Propagation,2015,63(12),5629.
33 Cai T, Wang G M, Tang S W, et al. Physical Review Applied,2017,8(3),034033.
34 Liu S, Cui T J, Xu Q, et al. Light Science & Applications,2016,5,e16076.
35 Cai T, Wang G M, Xu H X, et al. Annalen Der Physik,2018,530(1),1700321.
36 Wang G, Zhang Q, Cai T, et al. Optics Express,2018,26(3),3594.
37 Pan W K, Cai T, Tang S W, et al. Optics Express,2018,26(13),17447.
38 Cui T J, Qi M Q, Wan X, et al. Light: Science & Applications,2014,3,e218.
39 Zhang L, Wu R Y, Bai G D. Advanced Functional Materials,2018,28(33),1802205.
40 Wang X, Ding J, Zheng B, et al. Scientific Reports,2018,8,1876.
41 Yang J N, Wu X Y, Song J K. Optics Express,2019,6(27),9061.
[1] 赵亚娟, 李宝毅, 马晨, 王东红, 王富生. 基于超材料的多频段微带滤波器[J]. 材料导报, 2019, 33(Z2): 70-72.
[2] 孙明娟, 刘光烜, 张淑媛, 李雪. 耐腐蚀吸波超材料的制备及应用[J]. 材料导报, 2019, 33(Z2): 613-616.
[3] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[4] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[5] 汪丽丽, 宋健, 梁加南, 李敏华. 手性超材料圆极化波吸收特性研究进展[J]. 材料导报, 2019, 33(3): 500-509.
[6] 王强, 王岩, 黄小忠, 熊益军, 张芬. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2): 363-367.
[7] 潘威康, 汤登飞, 董建峰. 超表面在红外波段的光传输特性: 偏振控制、旋光性和不对称传输[J]. 《材料导报》期刊社, 2018, 32(5): 735-741.
[8] 高海涛, 王建江, 侯永申, 李泽. 影响电阻膜型超材料吸波体吸收特性的材料参数[J]. 材料导报, 2018, 32(24): 4230-4234.
[9] 冯团辉, 李优. 基于单负超材料的高品质因数亚波长谐振腔[J]. 《材料导报》期刊社, 2018, 32(14): 2366-2369.
[10] 康园园,汤登飞,王川,董建峰. 超材料宽带圆偏振器的研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1806-1812.
[11] 汤登飞,汪会波,王川,周霞,董建峰. 超材料对电磁波的极化转换及不对称传输研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 101-107.
[12] 高海涛, 王建江, 许宝才, 李泽, 刘嘉玮. “三明治”型超材料吸波体及其设计优化的研究现状*[J]. 《材料导报》期刊社, 2017, 31(3): 15-20.
[13] 宋健, 李敏华, 董建峰. 基于集总元件的超材料吸波器研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 114-122.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed