Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 101-107    https://doi.org/10.11896/j.issn.1005-023X.2017.07.016
  新材料新技术 |
超材料对电磁波的极化转换及不对称传输研究进展*
汤登飞,汪会波,王川,周霞,董建峰
宁波大学信息科学与工程学院,宁波 315211
Research Progress in Polarization Conversion and Asymmetric Transmission of Electromagnetic Waves Using Metamaterials
TANG Dengfei, WANG Huibo, WANG Chuan, ZHOU Xia, DONG Jianfeng
College of Information Science and Engineering,Ningbo University,Ningbo 315211
下载:  全 文 ( PDF ) ( 2462KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超材料新颖的电磁特性使它在许多领域都具有潜在的应用价值,如极化旋转器、类二极管等光子器件。综述了超材料中电磁波的极化转换的研究进展,包括线极化波之间、线极化波和圆极化波之间、圆极化波之间的相互极化转换,以及超材料的线极化波和圆极化波的不对称传输,并阐明了利用类Fabry-Perot谐振腔增强线极化波和圆极化波的不对称传输效应的机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤登飞
汪会波
王川
周霞
董建峰
关键词:  超材料  线极化波  圆极化波  极化转换  不对称传输  类Fabry-Perot谐振腔    
Abstract: Owing to their novel electromagnetic properties, metamaterials have some potential applications in many fields, such as polarized rotators, diode-like devices and other photonics devices. The polarization conversion between linear-to-linear, li-near-to-circular, circular-to-circular polarization waves and the asymmetric transmission in metamaterials are summarized. The mec-hanism of enhancing the asymmetric transmission of linear and circular polarization waves by using Fabry-Perot-like resonance is also expounded.
Key words:  metamaterial    linear polarization wave    circular polarization wave    polarization conversion    asymmetric transmission    Fabry-Perot-like resonant cavity
               出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  TB34  
基金资助: *国家自然科学基金(61475079)
通讯作者:  董建峰,男,1964年生,博士,教授,博士研究生导师,主要研究方向为负折射率材料、手征介质波导等E-mail:dongjianfeng@nbu.edu.cn   
作者简介:  汤登飞:男,1993年生,硕士研究生,研究方向为超材料的不对称传输特性E-mail:2586799984@qq.com
引用本文:    
汤登飞,汪会波,王川,周霞,董建峰. 超材料对电磁波的极化转换及不对称传输研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 101-107.
TANG Dengfei, WANG Huibo, WANG Chuan, ZHOU Xia, DONG Jianfeng. Research Progress in Polarization Conversion and Asymmetric Transmission of Electromagnetic Waves Using Metamaterials. Materials Reports, 2017, 31(7): 101-107.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.016  或          http://www.mater-rep.com/CN/Y2017/V31/I7/101
1 Fedotov V A, Mladyonov P L, Prosvirnin S L, et al. Asymmetric propagation of electromagn etic waves through a planar chiral structure[J]. Phys Rev Lett,2006,97(16):167401.
2 Schwanecke A S, Fedotov V A, Khardikov V V, et al. Nanostructured metal film with asym metric optical transmission[J]. Nano Lett,2008,8(8):2940.
3 Plum E, Fedotov V A, Zheludev N I. Planar metamaterial with transmission and reflection that depend on the direction of incidence[J]. Appl Phys Lett,2008,94(13):131901.
4 Plum E, Fedotov V A, Zheludev N I. Extrinsic electromagnetic chirality in metamaterials[J]. J Opt A Pure Appl Opt,2009,11(7):449.
5 Singh R, Plum E, Menzel C, et al. Terahertz metamaterial with asymmetric transmission[J]. Phys Rev B,2009,80(15):153104.
6 Wu L, Yang Z Y, Cheng Y Z, et al.Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials[J].Appl Phys Lett,2013,103(2):021903.
7 Liu D Y, Yao L F,Zhai X M, et al. Diode-like asymmetric transmission of circularly polarized waves[J]. Appl Phys A,2014,116(1):9.
8 Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science,2009,325(5947):1513.
9 Pan C P, Ren M X, Li Q Q, et al. Broadband asymmetric transmission of optical waves from spiral plasmonic metamaterials[J]. Appl Phys Lett,2014,104(104):121112.
10 Fan W J, Wang Y R, Zheng R Q, et al. Broadband high efficiency asymmetric transmission of achiral metamaterials[J]. Opt Express,2015,23(15):19535.
11 Li Z C, Liu W W, Cheng H, et al. Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces[J].Opt Lett,2016,41(13):3142.
12 Pfeiffer C, Zhang C, Ray V, et al. High performance bianisotropic metasurfaces: Asymmetric transmission of light[J]. Phys Rev Lett,2014,113(2):023902.
13 Cong L Q, Xu N N, Zhang W L, et al. Polarization control in terahertz metasurfaces with the lowest order rotational symmetry[J].Adv Opt Mater,2015,3(9):1176.
14 Menzel C, Helgert C, Rockstuhl C, et al. Asymmetric transmission of linearly polarized light at optical metamaterials[J]. Phys Rev Lett,2010,104(25):2010.
15 Kang M, Chen J, Cui H X, et al. Asymmetric transmission for li-nearly polarized electromagnetic radiation[J].Opt Express,2011,19(9):8347.
16 Zhang S, Liu F, Zentgraf T, et al. Interference induced asymmetric transmission through a mo nolayer of anisotropic chiral metamolecules[J]. Phys Rev A,2013,88(2):53.
17 Huang C, Feng Y J, Zhao J M, et al. Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures[J]. Phys Rev B:Condens Matter,2012,85(19):1614.
18 Mutlu M, Akosman A E, Serebryannikov A E, et al. Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling[J]. Phys Rev Lett,2012,108(21):689.
19 Cheng Y Z, He B, Wu C J, et al. Dual-band linear polarization transformer with diode-like asymmetric transmission based on composite metamaterial[J].Mater Sci Forum,2016,848:351.
20 Huang C, Feng Y J, Wu L X, et al. Diode-like asymmetric transmission of linearly polarized waves through twisted split-ring metamaterial structure[C]∥2012 Asia Pacific Microwave Conference Proceedings. Kaohsiung,2012:1157.
21 Shi J H, Liu X C, Yu S W, et al.Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial[J]. Appl Phys Lett,2013,102(19):191905.
22 Xu Y Q, Shi Q C, Zhu Z, et al. Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamate-rial[J]. Opt Express,2014,22(21):25679.
23 Zhou Z M, Yang H L. Triple-band asymmetric transmission of linear polarization with deformed S-shape bilayer chiral metamaterial[J]. Appl Phys A,2015,119(1):115.
24 Wu L X, Zhang M, Zhu B, et al. Dual-band asymmetric electromagnetic wave trans mission for dual polarizations in chiral metamaterial structure[J]. Appl Phys B,2014,117(2):527.
25 Pan X Y, Han S, Wang G F. Using dual-band asymmetric transmission effect of 2D metamaterial to manipulate linear polarization state of electromagnetic waves[J]. AIP Adv,2014, 4(9):802.
26 Liu D J, Xiao Z Y, et al. Broadband asymmetric transmission and polarization con version of a linearly polarized wave based on chiral metamaterial in terahertz region[J]. Wave Motion,2016,66:1.
27 Shi J H, Ma H F, Guan C Y, et al. Broadband chirality and asymmetric transmission in ultra thin 90° twisted Babinet-inverted metasurfaces[J]. Phys Rev B,2014,89(16):165128.
28 Ma X L, Xiao Z Y, Liu D J. Dual-band cross polarization converter in bi-layered complementary chiral metamaterial[J]. J Mod Opt,2016,63(10):937.
29 Li Z F, Mutlu M, Ozbay E. Highly asymmetric transmission of li-nearly pola rized waves realized with a multilayered structure including chiral metamaterials[J]. J Phys D: Appl Phys, 2014,47(7):186.
30 Liu D J, Xiao Z Y, Ma X L, et al.Broadband asymmetric transmission and multi-band 90° polarization rotator of linearly polarized wave based on multi-layered metamaterial[J]. Opt Commun,2015,354:272.
31 Li Z F,Zhao R K, Koschny T, et al. Chiral metamaterials with nega-tive refractive index based on four “U”split ring resonators[J]. Appl Phys Lett,2010,97 (8):081901.
32 Mutlu M, Akosman A E, Serebryannikov A E, et al. Asymmetric chiral met amaterial circular polarizer based on four U-shaped split ring resonators[J]. Opt Lett,2011,36(9):1653.
33 Ma X L, Huang C, Pu M B, et al. Multi-band circular polarizer using planar spiral metamaterial structure[J]. Opt Express,2012,20(14):16050.
34 Xie L Y, Yang H L, Huang X J, et al. Multi-band circular polarizer using archimede an spiral structure chiral metma-terial with zero and negative refractive index[J]. Prog Electromagn Res,2013,141:645.
35 Ye Y Q, Li X, Zhuang F, et al. Homogeneous circular polarizers using a bilayered chiral metamaterial[J]. Appl Phys Lett,2011,99(3):031111.
36 Xu H X, Wang G M, Qi M Q, et al. Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial[J]. Opt Express,2013,21(21):24912.
37 Li Y F, Zhang J Q, Qu S B, et al. Achieving wide-band linear-to-circular polariz ation conversion using ultra-thin bilayered metasurfaces[J]. J Appl Phys,2015,117(4):011129.
38 Wang Y H, Shao J,Li J, et al. Unidirectional cross polarization rotator with enhanced broadband transparency by cascading twisted nanobars[J]. J Opt,2016,18(5):055004 .
39 Cheng Y Z, Wu C J, Cheng Z Z, et al. Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator[J]. Prog Electromagn Res, 2016,155:105.
40 Zhai X M, Yao L F, Wang H B, et al. Multi-band asymmetric transmission and mutual conversion in near-infrared band[J]. Int J Appl Electromagn Mech,2016,50(3):395.
41 Dmitry L Markovich, Andrei Andryieuski, Maksim Zalkovskij, et al. Metamaterial polarizati on converter analysis: Limits of perfor-mance[J]. Appl Phys B,2012,112(2):143.
42 Huang X J, Yang D, Yang H L. Multiple-band reflective polarization converter using U-shaped metamaterial[J]. J Appl Phys,2014,115(10):103505.
43 Zhao J X, Xiao B X, Huang X J, et al. Multi-band reflective polarization converter based on complementary L-shaped metamaterial[J]. Microw Opt Technol Lett,2015,57(4):978.
44 Li H, Xiao B X, Huang X J, et al. Multiple-band reflective polarizationconverter based on deformed F-shaped metamaterial[J]. Phys Scr,2015,90(3):035806.
45 Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science,2013,340(6138):1304.
46 Liu D Y, Li M H, et al. Enhanced asymmetric transmission due to Fabry-Perot-like cavity[J]. Opt Express,2014,22(10):11707.
47 Song K, Liu Y H, Luo C R. High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial[J]. J Phys D: Appl Phys,2014,47(50):505104.
48 Xu K K, Xiao Z Y, Tang J Y, et al. Ultra-broadband and dual-band highly efficient polarization conversion based on the three-layered chiral structure[J]. Physica E: Low-dimens Syst Nanostruct,2016,81:169.
49 Xiao Z Y, Liu D J, Ma X L, et al. Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators[J]. Opt Express,2015,23(6):7053.
50 Ji R N, Wang S W, Liu X X, et al. Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities[J]. Nanoscale,2016,8(15):8189.
[1] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[2] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[3] 汪丽丽, 宋健, 梁加南, 李敏华. 手性超材料圆极化波吸收特性研究进展[J]. 材料导报, 2019, 33(3): 500-509.
[4] 王强, 王岩, 黄小忠, 熊益军, 张芬. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2): 363-367.
[5] 潘威康, 汤登飞, 董建峰. 超表面在红外波段的光传输特性: 偏振控制、旋光性和不对称传输[J]. 《材料导报》期刊社, 2018, 32(5): 735-741.
[6] 高海涛, 王建江, 侯永申, 李泽. 影响电阻膜型超材料吸波体吸收特性的材料参数[J]. 材料导报, 2018, 32(24): 4230-4234.
[7] 冯团辉, 李优. 基于单负超材料的高品质因数亚波长谐振腔[J]. 《材料导报》期刊社, 2018, 32(14): 2366-2369.
[8] 康园园,汤登飞,王川,董建峰. 超材料宽带圆偏振器的研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1806-1812.
[9] 高海涛, 王建江, 许宝才, 李泽, 刘嘉玮. “三明治”型超材料吸波体及其设计优化的研究现状*[J]. 《材料导报》期刊社, 2017, 31(3): 15-20.
[10] 宋健, 李敏华, 董建峰. 基于集总元件的超材料吸波器研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 114-122.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed