Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 101-107    https://doi.org/10.11896/j.issn.1005-023X.2017.07.016
  新材料新技术 |
超材料对电磁波的极化转换及不对称传输研究进展*
汤登飞,汪会波,王川,周霞,董建峰
宁波大学信息科学与工程学院,宁波 315211
Research Progress in Polarization Conversion and Asymmetric Transmission of Electromagnetic Waves Using Metamaterials
TANG Dengfei, WANG Huibo, WANG Chuan, ZHOU Xia, DONG Jianfeng
College of Information Science and Engineering,Ningbo University,Ningbo 315211
下载:  全 文 ( PDF ) ( 2462KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超材料新颖的电磁特性使它在许多领域都具有潜在的应用价值,如极化旋转器、类二极管等光子器件。综述了超材料中电磁波的极化转换的研究进展,包括线极化波之间、线极化波和圆极化波之间、圆极化波之间的相互极化转换,以及超材料的线极化波和圆极化波的不对称传输,并阐明了利用类Fabry-Perot谐振腔增强线极化波和圆极化波的不对称传输效应的机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤登飞
汪会波
王川
周霞
董建峰
关键词:  超材料  线极化波  圆极化波  极化转换  不对称传输  类Fabry-Perot谐振腔    
Abstract: Owing to their novel electromagnetic properties, metamaterials have some potential applications in many fields, such as polarized rotators, diode-like devices and other photonics devices. The polarization conversion between linear-to-linear, li-near-to-circular, circular-to-circular polarization waves and the asymmetric transmission in metamaterials are summarized. The mec-hanism of enhancing the asymmetric transmission of linear and circular polarization waves by using Fabry-Perot-like resonance is also expounded.
Key words:  metamaterial    linear polarization wave    circular polarization wave    polarization conversion    asymmetric transmission    Fabry-Perot-like resonant cavity
出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  TB34  
基金资助: *国家自然科学基金(61475079)
通讯作者:  董建峰,男,1964年生,博士,教授,博士研究生导师,主要研究方向为负折射率材料、手征介质波导等E-mail:dongjianfeng@nbu.edu.cn   
作者简介:  汤登飞:男,1993年生,硕士研究生,研究方向为超材料的不对称传输特性E-mail:2586799984@qq.com
引用本文:    
汤登飞,汪会波,王川,周霞,董建峰. 超材料对电磁波的极化转换及不对称传输研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 101-107.
TANG Dengfei, WANG Huibo, WANG Chuan, ZHOU Xia, DONG Jianfeng. Research Progress in Polarization Conversion and Asymmetric Transmission of Electromagnetic Waves Using Metamaterials. Materials Reports, 2017, 31(7): 101-107.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.016  或          https://www.mater-rep.com/CN/Y2017/V31/I7/101
1 Fedotov V A, Mladyonov P L, Prosvirnin S L, et al. Asymmetric propagation of electromagn etic waves through a planar chiral structure[J]. Phys Rev Lett,2006,97(16):167401.
2 Schwanecke A S, Fedotov V A, Khardikov V V, et al. Nanostructured metal film with asym metric optical transmission[J]. Nano Lett,2008,8(8):2940.
3 Plum E, Fedotov V A, Zheludev N I. Planar metamaterial with transmission and reflection that depend on the direction of incidence[J]. Appl Phys Lett,2008,94(13):131901.
4 Plum E, Fedotov V A, Zheludev N I. Extrinsic electromagnetic chirality in metamaterials[J]. J Opt A Pure Appl Opt,2009,11(7):449.
5 Singh R, Plum E, Menzel C, et al. Terahertz metamaterial with asymmetric transmission[J]. Phys Rev B,2009,80(15):153104.
6 Wu L, Yang Z Y, Cheng Y Z, et al.Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials[J].Appl Phys Lett,2013,103(2):021903.
7 Liu D Y, Yao L F,Zhai X M, et al. Diode-like asymmetric transmission of circularly polarized waves[J]. Appl Phys A,2014,116(1):9.
8 Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science,2009,325(5947):1513.
9 Pan C P, Ren M X, Li Q Q, et al. Broadband asymmetric transmission of optical waves from spiral plasmonic metamaterials[J]. Appl Phys Lett,2014,104(104):121112.
10 Fan W J, Wang Y R, Zheng R Q, et al. Broadband high efficiency asymmetric transmission of achiral metamaterials[J]. Opt Express,2015,23(15):19535.
11 Li Z C, Liu W W, Cheng H, et al. Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces[J].Opt Lett,2016,41(13):3142.
12 Pfeiffer C, Zhang C, Ray V, et al. High performance bianisotropic metasurfaces: Asymmetric transmission of light[J]. Phys Rev Lett,2014,113(2):023902.
13 Cong L Q, Xu N N, Zhang W L, et al. Polarization control in terahertz metasurfaces with the lowest order rotational symmetry[J].Adv Opt Mater,2015,3(9):1176.
14 Menzel C, Helgert C, Rockstuhl C, et al. Asymmetric transmission of linearly polarized light at optical metamaterials[J]. Phys Rev Lett,2010,104(25):2010.
15 Kang M, Chen J, Cui H X, et al. Asymmetric transmission for li-nearly polarized electromagnetic radiation[J].Opt Express,2011,19(9):8347.
16 Zhang S, Liu F, Zentgraf T, et al. Interference induced asymmetric transmission through a mo nolayer of anisotropic chiral metamolecules[J]. Phys Rev A,2013,88(2):53.
17 Huang C, Feng Y J, Zhao J M, et al. Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures[J]. Phys Rev B:Condens Matter,2012,85(19):1614.
18 Mutlu M, Akosman A E, Serebryannikov A E, et al. Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling[J]. Phys Rev Lett,2012,108(21):689.
19 Cheng Y Z, He B, Wu C J, et al. Dual-band linear polarization transformer with diode-like asymmetric transmission based on composite metamaterial[J].Mater Sci Forum,2016,848:351.
20 Huang C, Feng Y J, Wu L X, et al. Diode-like asymmetric transmission of linearly polarized waves through twisted split-ring metamaterial structure[C]∥2012 Asia Pacific Microwave Conference Proceedings. Kaohsiung,2012:1157.
21 Shi J H, Liu X C, Yu S W, et al.Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial[J]. Appl Phys Lett,2013,102(19):191905.
22 Xu Y Q, Shi Q C, Zhu Z, et al. Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamate-rial[J]. Opt Express,2014,22(21):25679.
23 Zhou Z M, Yang H L. Triple-band asymmetric transmission of linear polarization with deformed S-shape bilayer chiral metamaterial[J]. Appl Phys A,2015,119(1):115.
24 Wu L X, Zhang M, Zhu B, et al. Dual-band asymmetric electromagnetic wave trans mission for dual polarizations in chiral metamaterial structure[J]. Appl Phys B,2014,117(2):527.
25 Pan X Y, Han S, Wang G F. Using dual-band asymmetric transmission effect of 2D metamaterial to manipulate linear polarization state of electromagnetic waves[J]. AIP Adv,2014, 4(9):802.
26 Liu D J, Xiao Z Y, et al. Broadband asymmetric transmission and polarization con version of a linearly polarized wave based on chiral metamaterial in terahertz region[J]. Wave Motion,2016,66:1.
27 Shi J H, Ma H F, Guan C Y, et al. Broadband chirality and asymmetric transmission in ultra thin 90° twisted Babinet-inverted metasurfaces[J]. Phys Rev B,2014,89(16):165128.
28 Ma X L, Xiao Z Y, Liu D J. Dual-band cross polarization converter in bi-layered complementary chiral metamaterial[J]. J Mod Opt,2016,63(10):937.
29 Li Z F, Mutlu M, Ozbay E. Highly asymmetric transmission of li-nearly pola rized waves realized with a multilayered structure including chiral metamaterials[J]. J Phys D: Appl Phys, 2014,47(7):186.
30 Liu D J, Xiao Z Y, Ma X L, et al.Broadband asymmetric transmission and multi-band 90° polarization rotator of linearly polarized wave based on multi-layered metamaterial[J]. Opt Commun,2015,354:272.
31 Li Z F,Zhao R K, Koschny T, et al. Chiral metamaterials with nega-tive refractive index based on four “U”split ring resonators[J]. Appl Phys Lett,2010,97 (8):081901.
32 Mutlu M, Akosman A E, Serebryannikov A E, et al. Asymmetric chiral met amaterial circular polarizer based on four U-shaped split ring resonators[J]. Opt Lett,2011,36(9):1653.
33 Ma X L, Huang C, Pu M B, et al. Multi-band circular polarizer using planar spiral metamaterial structure[J]. Opt Express,2012,20(14):16050.
34 Xie L Y, Yang H L, Huang X J, et al. Multi-band circular polarizer using archimede an spiral structure chiral metma-terial with zero and negative refractive index[J]. Prog Electromagn Res,2013,141:645.
35 Ye Y Q, Li X, Zhuang F, et al. Homogeneous circular polarizers using a bilayered chiral metamaterial[J]. Appl Phys Lett,2011,99(3):031111.
36 Xu H X, Wang G M, Qi M Q, et al. Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial[J]. Opt Express,2013,21(21):24912.
37 Li Y F, Zhang J Q, Qu S B, et al. Achieving wide-band linear-to-circular polariz ation conversion using ultra-thin bilayered metasurfaces[J]. J Appl Phys,2015,117(4):011129.
38 Wang Y H, Shao J,Li J, et al. Unidirectional cross polarization rotator with enhanced broadband transparency by cascading twisted nanobars[J]. J Opt,2016,18(5):055004 .
39 Cheng Y Z, Wu C J, Cheng Z Z, et al. Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator[J]. Prog Electromagn Res, 2016,155:105.
40 Zhai X M, Yao L F, Wang H B, et al. Multi-band asymmetric transmission and mutual conversion in near-infrared band[J]. Int J Appl Electromagn Mech,2016,50(3):395.
41 Dmitry L Markovich, Andrei Andryieuski, Maksim Zalkovskij, et al. Metamaterial polarizati on converter analysis: Limits of perfor-mance[J]. Appl Phys B,2012,112(2):143.
42 Huang X J, Yang D, Yang H L. Multiple-band reflective polarization converter using U-shaped metamaterial[J]. J Appl Phys,2014,115(10):103505.
43 Zhao J X, Xiao B X, Huang X J, et al. Multi-band reflective polarization converter based on complementary L-shaped metamaterial[J]. Microw Opt Technol Lett,2015,57(4):978.
44 Li H, Xiao B X, Huang X J, et al. Multiple-band reflective polarizationconverter based on deformed F-shaped metamaterial[J]. Phys Scr,2015,90(3):035806.
45 Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science,2013,340(6138):1304.
46 Liu D Y, Li M H, et al. Enhanced asymmetric transmission due to Fabry-Perot-like cavity[J]. Opt Express,2014,22(10):11707.
47 Song K, Liu Y H, Luo C R. High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial[J]. J Phys D: Appl Phys,2014,47(50):505104.
48 Xu K K, Xiao Z Y, Tang J Y, et al. Ultra-broadband and dual-band highly efficient polarization conversion based on the three-layered chiral structure[J]. Physica E: Low-dimens Syst Nanostruct,2016,81:169.
49 Xiao Z Y, Liu D J, Ma X L, et al. Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators[J]. Opt Express,2015,23(6):7053.
50 Ji R N, Wang S W, Liu X X, et al. Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities[J]. Nanoscale,2016,8(15):8189.
[1] 姚未来, 刘元雪, 孙涛, 赵宏刚, 穆锐, 雷屹欣. 采用局域共振超材料混凝土提升结构消波防护性能:综述和展望[J]. 材料导报, 2024, 38(5): 23080236-14.
[2] 阮心怡, 张恒宇, 王妮, 肖红. 周期结构电磁超材料吸波体的设计及最新进展[J]. 材料导报, 2024, 38(3): 22090223-11.
[3] 陈俊豪, 曾晓辉, 谢友均, 龙广成, 唐卓. 多重谐振水泥基声子晶体带隙特性研究[J]. 材料导报, 2024, 38(12): 22080126-9.
[4] 刘雄飞, 王壮, 吴尧尧, 王晓中. 电磁吸波结构研究进展[J]. 材料导报, 2023, 37(22): 22020147-8.
[5] 孟真, 李广德, 崔光振, 王义, 刘东青, 程海峰. 基于超材料的红外/雷达兼容隐身材料研究进展[J]. 材料导报, 2023, 37(21): 22040001-8.
[6] 师甜甜, 杜立飞, 张海锋, 田闰博. 水基吸波超材料的研究进展[J]. 材料导报, 2023, 37(18): 21120076-7.
[7] 陈孟州, 刘顾, 汪刘应, 葛超群, 许可俊, 王伟超, 王龙. 超材料吸波体及其3D打印制造研究进展[J]. 材料导报, 2023, 37(16): 21100117-7.
[8] 杜益嘉, 王盼, 肖诚禹, 唐道远, 徐建明, 周涵. 基于外场调控的智能热控超材料[J]. 材料导报, 2022, 36(2): 20110075-6.
[9] 宋友婷, 黄聪颖, 封哲宇, 时胜圆, 李敏华, 董建峰. 吸透一体超材料研究进展[J]. 材料导报, 2022, 36(11): 21060182-9.
[10] 孙磊, 孙俊, 高晓梅, 杨彪, 张晶, 周瑶. 基于超材料的微波宽带完美吸波体设计[J]. 材料导报, 2021, 35(12): 12014-12019.
[11] 夏进军, 李洁, 张雨萌, 张育新. 折纸结构及其特性的工程应用策略[J]. 材料导报, 2021, 35(11): 11196-11207.
[12] 方全海, 吴良沛, 董建峰. 多功能超表面的光传输特性研究进展[J]. 材料导报, 2020, 34(9): 9048-9054.
[13] 杨智为, 周涵. 基于分形几何思路的超材料结构设计:综述[J]. 材料导报, 2020, 34(21): 21052-21060.
[14] 赵亚娟, 李宝毅, 马晨, 王东红, 王富生. 基于超材料的多频段微带滤波器[J]. 材料导报, 2019, 33(Z2): 70-72.
[15] 孙明娟, 刘光烜, 张淑媛, 李雪. 耐腐蚀吸波超材料的制备及应用[J]. 材料导报, 2019, 33(Z2): 613-616.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed