Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 21100117-7    https://doi.org/10.11896/cldb.21100117
  金属与金属基复合材料 |
超材料吸波体及其3D打印制造研究进展
陈孟州, 刘顾, 汪刘应*, 葛超群, 许可俊, 王伟超, 王龙
火箭军工程大学智剑实验室,西安 710025
Research Progress of Metamaterial Absorbers and the Appropriate 3D Printing Manufacturing
CHEN Mengzhou, LIU Gu, WANG Liuying*, GE Chaoqun, XU Kejun, WANG Weichao, WANG Long
Zhijian Laboratory, Rocket Force University of Engineering, Xi'an 710025, China
下载:  全 文 ( PDF ) ( 7797KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超材料吸波体由于其独特的电磁特性和较强的结构设计性等优点,成为电磁吸波领域的研究热点。而3D打印技术能够突破传统制造方式的缺陷,极大地提高设计自由度,因此利用其制备超材料能够实现结构与功能的一体化,逐渐成为超材料吸波体领域的重要发展方向。本文阐述了基于等效介质理论的超材料吸波体吸波机理,介绍了超材料吸波体在宽频吸波、极化和角度不敏感、动态可调性等方面的研究现状,进而归纳了3D打印超材料吸波体的研究进展以及现阶段3D打印超材料吸波体研究中存在的问题,并从吸波性能、结构设计、应用发展三个角度对3D打印超材料吸波体的未来发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈孟州
刘顾
汪刘应
葛超群
许可俊
王伟超
王龙
关键词:  超材料吸波体  3D打印  宽频吸波  动态可调    
Abstract: The metamaterial absorber has become a research hotspot in the field of electromagnetic absorption owing to its unique electromagnetic properties and strong structural designability. 3D printing technology can break through the defects of traditional manufacturing methods and greatly improve the degree of freedom of design. Therefore, using 3D printing technology to prepare metamaterials can realize the integration of structure and function, and it has gradually become an important development direction in the field of metamaterial absorbers. In this paper, we elaborate the absorption mechanism of metamaterial absorbers through equivalent medium theory, introduce the research status of metamaterial absorbers on broadband absorption, polarization and angle independence, and dynamic tunability. Meanwhile, this paper summarizes the research progress of 3D printed metamaterial absorbers and the problems of 3D printed metamaterial absorbers in the current research. Finally, we prospect the future development of 3D printed metamaterial absorbers from three perspectives including absorbing performance, structural design, and application development.
Key words:  metamaterial absorber    3D printing    broadband absorbing    dynamic tunability
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TB34  
基金资助: 国防科技基础加强计划技术领域基金(2020-JCJQ-JJ222);陕西省“特支计划”科技资助(陕组通字(2020)44号);陕西省创新团队(2014KCT-03)
通讯作者:  *汪刘应,火箭军工程大学教授。2007年毕业于火箭军工程大学,获工程博士学位。2007—2009年在西安交通大学从事博士后研究。主要研究方向为特种功能材料与隐身技术。已在国内外重要期刊上发表文章120余篇。lywangxa@163.com   
作者简介:  陈孟州,2020年6月毕业于火箭军工程大学,获得工学学士学位。现为火箭军工程大学硕士研究生,在汪刘应教授的指导下进行研究。目前主要研究领域为3D打印超材料。
引用本文:    
陈孟州, 刘顾, 汪刘应, 葛超群, 许可俊, 王伟超, 王龙. 超材料吸波体及其3D打印制造研究进展[J]. 材料导报, 2023, 37(16): 21100117-7.
CHEN Mengzhou, LIU Gu, WANG Liuying, GE Chaoqun, XU Kejun, WANG Weichao, WANG Long. Research Progress of Metamaterial Absorbers and the Appropriate 3D Printing Manufacturing. Materials Reports, 2023, 37(16): 21100117-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100117  或          http://www.mater-rep.com/CN/Y2023/V37/I16/21100117
1 Du Y F, Jiang J L, Liao J S. et al. Materials Reports, 2016, 30(9), 115(in Chinese).
杜云峰,姜交来,廖俊生, 等. 材料导报, 2016, 30(9),115.
2 Karpov E G. Acta Materialia, 2017, 123, 245.
3 Landy N I, Sajuyigbe S, Mock J J, et al. Physical Review Letter, 2008, 100, 207402.
4 Costa F, Monorchio A, Manara G. IEEE Antennas & Propagation Magazine,2012, 54(4), 35.
5 Smith D R, Vier D C, Koschny T, et al. Soft Matter Physics, 2005, 71(3), 36617.
6 Simovski C R. Optics Spectroscopy, 2009, 107(5), 726.
7 Chen X, Grzegorczyk T M, Wu B I, et al. Physical Review E, 2004, 70(1), 016608.
8 Sun L, Sun J, Gao X M, et al. Materials Reports, 2021, 35(12), 12014(in Chinese).
孙磊,孙俊,高晓梅,等.材料导报, 2021, 35(12), 12014.
9 Zhang C, Cheng Q, Yang J, et al. Applied Physics Letters, 2017, 110(14), 143511.
10 Su Z, Yin J, Zhao X. Optics Express, 2015, 23(2), 1679.
11 Ding F, Cui Y, Ge X, et al. Applied Physics Letters, 2012, 100(10), 103506.
12 Xu H, Wang G, Qi M, et al. IEEE Transactions on Antennas and Propagation,2013, 61(2), 735.
13 Song J, Li M H, Dong J F, et al. Materials Reports, 2017, 31(21), 114 (in Chinese).
宋健,李敏华,董建峰, 等. 材料导报, 2017, 31(21), 114.
14 Zhi C Y, Wang Y, Nie Y, et al. Journal of Applied Physics, 2012, 111(4), 44902.
15 Kundu D, Mohan A, Chakrabarty A. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1589.
16 Sheng J, Zhang Y, Liu L, et al. Journal of Alloys and Compounds, 2019, 809, 151866.
17 Liu W, Tian J, Yang R, et al. Current Applied Physics, 2021, 31, 122.
18 Zhang H, Ling F, Wang H, et al. Optics Communications, 2020, 463, 125394.
19 Hu H, Liao W, Hou L, et al. AEU-International Journal of Electronics and Communications, 2021, 138, 153860.
20 Zhang Z, Zhang L, Chen X, et al. Journal of Magnetism and Magnetic Materials, 2020, 497, 166075.
21 Zhou W, Zhu Z, Zhao H. Results in Physics, 2020, 18, 103260.
22 Feng L, Li W, Wang Y. Journal of Magnetism and Magnetic Materials, 2021, 541, 168510.
23 Wang L L, Song J,Liang J N, et al. Materials Reports, 2019, 33(3), 500(in Chinese).
汪丽丽,宋健,梁加南,等.材料导报, 2019, 33(3), 500.
24 Cheng Y, Gong R, Cheng Z. Optics Communications,2016, 361, 41.
25 Xu J, Fan Y, Su X, et al. Optical Materials, 2021, 113, 110852.
26 Wu D, Liu Y, Yu Z, et al. Optics Communications, 2016, 380, 221.
27 Tang J, Xiao Z, Xu K, et al. Optics Communications, 2016, 372, 64.
28 Wu T, Li W, Chen S, et al. Results in Physics, 2021, 20, 103753.
29 Kong X, Zhang H, Dao R, et al. Optics Communications, 2019, 453, 124435.
30 Fang J, Huang J, Gou Y, et al. Optik, 2020, 200, 163171.
31 Wang Z, Wang X, Wang J, et al. Optik, 2021, 247, 167958.
32 Liu X, Ren Z, Yang T, et al. Journal of Materials Science & Technology, 2021, 62, 249.
33 Bradley P J, Torrico M O M, Brennan C, et al. Scientific Reports, 2018, 8, 14490.
34 Abdulkarim Y I, Awl H N, Alkurt F O, et al. Journal of Materials Research and Technology, 2021, 13, 1150.
35 Zhou Y, Shen Z, Huang X, et al. Physics Letters A, 2019, 383(23), 2739.
36 Shen Z, Huang X, Yang H, et al. Journal of Applied Physics, 2018, 123(22), 225106.
37 Guo J Y, Liang Q X, Jiang Z J, et al. Journal of Mechanical Enginee-ring, 2019, 55(23), 226(in Chinese).
郭建勇,梁庆宣,江子杰,等.机械工程学报, 2019, 55(23), 226.
38 Wu Z, Chen X, Zhang Z, et al. Applied Physics Express, 2019, 12(5), 57003.
39 Chen X, Wu Z, Zhang Z, et al. Physica E: Low-dimensional Systems and Nanostructures, 2020, 120, 114017.
40 Gong J, Yang F, Shao Q, et al. RSC Advances, 2017, 7(67), 4198.
41 Xu Y, Yuan L, Liang Z, et al. Journal of Alloys and Compounds, 2017, 704, 593.
42 Lai W, Wang Y, He J. Polymers, 2020, 12(8), 1694.
43 Guan X, Xu X, Kuniyoshi R, et al. Materials Research Express, 2018, 5(11), 115303.
44 Xiong Y J, Wang Y, Wang Q, et al. Acta Physica Sinica, 2018(8), 98(in Chinese).
熊益军,王岩,王强,等.物理学报, 2018(8), 98.
45 Zhou D, Huang X, Du Z. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 133.
46 Luo J, Chen X, Wu Z, et al. Optics Communications, 2020, 474, 126176.
47 Liu T, Xu Y, Zheng D, et al. Physica B: Condensed Matter, 2019, 553, 88.
48 Pei Z, Xu Y, Wei F, et al. Journal of Magnetism and Magnetic Mate-rials, 2020, 493, 165742.
49 Yang D, Yin Y, Zhang Z, et al. Materials Letters, 2020, 281, 128571.
50 Mei H, Yang W, Zhao X, et al. Materials & Design, 2021, 197, 109271.
51 Mei H, Zhao X, Zhou S, et al. Chemical Engineering Journal,2019, 372, 940.
52 Lim D, Yu S, Lim S. IEEE Access, 2018, 6, 43654.
53 Jeong H, Tentzeris M M, Lim S. International Journal of Antennas and Propagation, 2018, 1963051, 1.
54 Jiang W, Yan L, Ma H, et al. Scientific Reports, 2018, 8(1), 4817.
55 Laur V, Maalouf A, Chevalier A, et al. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(2), 390.
56 Tian X Y, Shang Z T, Yin L X, et al. Aeronautical Manufacturing Technology, 2019, 62(5), 14(in Chinese).
田小永,尚振涛,尹丽仙,等.航空制造技术, 2019, 62(5), 14.
57 Yin L, Tian X, Shang Z, et al. Materials Letters, 2019, 239, 132.
58 Ren J, Yin J. Materials, 2018, 11(7), 1249.
59 Lai W, Wang Y, He J. Polymers, 2020, 12(6), 1217.
60 Xiao S, Mei H, Han D, et al. Ceramics International, 2019, 45(9), 11475.
61 Lei L, Yao Z, Zhou J, et al. Composites Science and Technology, 2020, 200, 108479.
62 Huang H, Wang W, Hua M, et al. Physica B: Condensed Matter, 2020, 595, 412368.
[1] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[2] 周振豪, 姜勇刚, 冯军宗, 李良军, 冯坚. 直写成型制备多孔陶瓷技术研究进展[J]. 材料导报, 2023, 37(4): 20120004-7.
[3] 徐卓越, 李辉, 张大旺, 孙雪梅, 赵柯飞, 王悦莹. 建筑3D打印用胶凝材料及其相关性能研究进展[J]. 材料导报, 2023, 37(12): 21080117-14.
[4] 朱伶俐, 杨章, 赵宇, 管学茂, 武喜凯. 钢渣-矿渣复合水泥基材料3D打印性能[J]. 材料导报, 2023, 37(12): 21100196-6.
[5] 何晓龙, 陈志谦, 李璐, 石一非. 基于聚合物-陶瓷复合材料的异形龙伯透镜天线的研究及制造[J]. 材料导报, 2023, 37(12): 21100228-6.
[6] 张英, 曹亦俊, 彭伟军, 苗毅恒, 刘曙光. 基于3D打印的三维石墨烯基电极研究进展[J]. 材料导报, 2023, 37(11): 21070040-13.
[7] 金海泽, 孔文慧, 贾赫男, 冯晨晨, 李翠霞, 贾德昌. 直写成型无机非金属材料及其结构/功能应用进展[J]. 材料导报, 2023, 37(11): 21120033-10.
[8] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[9] 程平, 彭勇, 汪馗, 姚松, 刘志祥. 3D打印连续苎麻纤维增强聚乳酸复合材料的准静态侵彻性能[J]. 材料导报, 2023, 37(1): 22010088-6.
[10] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[11] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[12] 刘琛, 李勇, 周文, 吴宜勇, 王岩, 吴跃民, 王芳, 琚丹丹, 闫继宏. 模拟月/火星壤的原位成型技术研究进展[J]. 材料导报, 2022, 36(22): 22050122-7.
[13] 李俊生, 李端, 李学超, 高世涛, 王衍飞, 万帆, 刘荣军. 3D打印天线罩技术研究进展[J]. 材料导报, 2022, 36(22): 22050328-10.
[14] 崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
[15] 张蕾, 李博, 高阳. 压阻式柔性应变传感器研究进展[J]. 材料导报, 2022, 36(19): 20120243-11.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed