Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 21070040-13    https://doi.org/10.11896/cldb.21070040
  无机非金属及其复合材料 |
基于3D打印的三维石墨烯基电极研究进展
张英1, 曹亦俊1,2, 彭伟军1, 苗毅恒2, 刘曙光1
1 郑州大学化工学院,郑州 450001
2 郑州大学河南省资源与材料工业技术研究院,郑州 450001
Research Progress of Three-dimensional Graphene-based Electrodes Based on 3D Printing
ZHANG Ying1, CAO Yijun1,2, PENG Weijun1, MIAO Yiheng2, LIU Shuguang1
1 School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
2 Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 15058KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超级电容器是一种高性能的能量存储设备,因具有高功率密度、快速的充放电速率、高安全性能、优异的循环稳定性和较宽的工作温度范围等优点备受人们关注和青睐,并在清洁能源、电动汽车、无线通信、航空航天、军事和消费电子等领域得到了广泛的应用。电极材料是决定超级电容器储能性能的关键因素之一,开发新型、高效电极材料的已成为国内外研究的热点。传统电极材料经过长期的发展虽取得了一些技术革新和突破,但仍存在碳基电极容量不大、过渡金属化合物导电性不高、导电聚合物循环稳定性不足等缺点。石墨烯是一种由单层碳原子构成的碳纳米材料,具有优异的物理化学性能,是超级电容器电极材料的新宠。三维石墨烯不仅能保留单层或少数层石墨烯独特的物理化学性质,而且具有低密度、多孔性、高度连通结构和微反应环境等特性,在超级电容器领域备受关注,比石墨烯具有更加广泛的应用前景。目前,三维石墨烯的制备方法主要有湿化学技术、CVD技术和3D打印技术等。其中,3D打印技术凭借其在空间构型设计和化学组成优化方面的独特优势,在生物医药和能源器件等领域迅速发展。基于3D打印的石墨烯基材料不仅具有良好的孔道分布和优异的力学性能,而且其独特的3D打印结构还能赋予电极新的功能和特性,在微电子器件迈向微型和柔性中扮演着重要角色。本文综述了超级电容器的电荷储存机理和电极分类,并详细介绍了3D打印的石墨烯及其复合体系在电极材料应用中的研究进展,讨论了当前3D打印石墨烯基电极材料所面临的主要问题和挑战,以期为3D打印石墨烯基电极的设计、开发和应用提供思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张英
曹亦俊
彭伟军
苗毅恒
刘曙光
关键词:  3D打印  石墨烯  电极  超级电容器  能量存储    
Abstract: Supercapacitor (SC) is a kind of high-performance energy storage devices. It has attracted extensive attention due to the advantages of high power density, fast charge and discharge rate, high safety performance, excellent cycle stability and wide operating temperature range. Such advantages bestow SC to be widely used in the fields of clean energy, electric vehicles, wireless communications, aerospace, military and consumer electronics. Electrode material is one of the key factors that determine the energy storage performance of SC. Thus, it is a research hotspot to develop novel and high-efficiency electrode material. Conventional electrode materials have achieved some technological innovation and breakthroughs with unremitting efforts, while the disadvantages such as low capacity of carbonaceous electrodes, low conductivity of transition metal compounds and insufficient cycling stability of conductive polymers still limit their further development. Graphene is a kind of carbon-based nanomaterial, which composed of a single layer of carbon atom. It has become the new favorite of SC electrode material originated from its excellent physical and chemical properties. Three-dimensional graphene(3DG) not only retains the unique physical and chemical properties of the single-layer or few-layer graphene, but also has the characteristics of low density, porosity, highly connected structure and microscale reaction environment, which endows it with a wider application prospect than graphene, and attracts more attention in the field of SC. At present, wet chemical technology, CVD technology and 3D printing technology are proposed for the preparation of 3DG. Among them, the 3D printing technology has been developed rapidly in the fields of biomedicine and energy devices due to the unique advantages in design of space configuration and optimization of chemical composition. Graphene-based materials manufactured by 3D printing not only have good pore distribution as well as excellent mechanical properties, but their unique structure derived from 3D printing also endows the electrodes with new functions and characteristics. Therefore, they play an important role in the development of microelectronic devices towards miniaturization and flexibility. This article reviews the charge storage mechanism and classification of SC electrode materials, and introduces the research progress of 3D printed graphene and its composite system in the application of electrode materials in detail. Moreover, the main problems and challenges encountered by current 3D printed graphene-based electrodes were also discussed. It provided new ideas for design, development and application of 3D printed graphene-based electrodes.
Key words:  3D printing    graphene    electrodes    supercapacitors    energy storage
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  TQ152  
基金资助: 国家自然科学基金(51804275;U1704252)
通讯作者:  彭伟军,通信作者,郑州大学化工学院教授、博士研究生导师,2012年7月获得武汉理工大学工学学士学位,2017年7月毕业于武汉理工大学获得工学博士学位,2017年9月入职郑州大学冶金工程专业,并加入刘炯天院士和曹亦俊教授的资源加工与高效利用团队。主要从事矿物基先进功能材料的可控制备及应用,低品质复杂矿产资源高效选冶,化工、选冶固废和废水综合处置及资源化利用的研究。以第一或通信作者身份发表学术论文40余篇,其中SCI收录论文近30篇,SCI引用1 000余次,2篇论文入选ESI高被引论文,申请和授权国家专利14项。
曹亦俊,通信作者,郑州大学化工学院教授、博士研究生导师,教育部“长江学者”特聘教授,国家“万人计划”科技创新领军人才。主要研究低品质矿产资源选冶分离理论与技术,工业固废和废水处置及资源化利用,矿物基先进功能材料的可控制备及应用,关键金属冶金与材料化科学基础。长期从事矿物资源分离过程强化理论与技术、固废资源化利用及工业废水处理等方面的研究工作。成果获国家技术发明二等奖及国家科技进步二等奖各1项、教育部科技进步一等奖1项,其他省部级及行业协会科技奖励多项。发表学术论文100余篇,其中第一或通信作者SCI收录80余篇,授权发明专利20余项。   
作者简介:  张英,2020年6月毕业于昆明理工大学获得工学学士学位。现为郑州大学化工学院硕士研究生,在曹亦俊教授的指导下进行研究。目前主要研究领域为三维石墨烯基电极材料的可控制备及应用。
引用本文:    
张英, 曹亦俊, 彭伟军, 苗毅恒, 刘曙光. 基于3D打印的三维石墨烯基电极研究进展[J]. 材料导报, 2023, 37(11): 21070040-13.
ZHANG Ying, CAO Yijun, PENG Weijun, MIAO Yiheng, LIU Shuguang. Research Progress of Three-dimensional Graphene-based Electrodes Based on 3D Printing. Materials Reports, 2023, 37(11): 21070040-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070040  或          http://www.mater-rep.com/CN/Y2023/V37/I11/21070040
1 Guney M S,Tepe Y. Renewable and Sustainable Energy Reviews, 2017, 75, 1187.
2 Hu G, Xu C, Sun Z, et al. Advanced Materials, 2016, 28(8), 1603.
3 Fu K, Wang Y, Yan C, et al. Advanced Materials, 2016, 28(13), 2587.
4 He J, Hartmann G, Lee M, et al. Energy & Environmental Science, 2019, 12(1), 344.
5 Li X,Zhi L. Chem Soc Rev, 2018, 47(9), 3189.
6 Wu S, Chen Y, Jiao T, et al. Advanced Energy Materials, 2019, 9(47), e1902915.
7 Wu B, Zhang G, Yan M, et al. Small, 2018, 14(13), e1703850.
8 Li S, Liu Y, Zhao X, et al. Advanced Materials, 2021, 33(12), e2007480.
9 Zhao Z, Ye Y, Zhu W, et al. Chinese Chemical Letters, 2018, 29(4), 629.
10 Brown E, Yan P, Tekik H, et al. Materials & Design, 2019, 170,e107689.
11 Fu G, Yan X, Chen Y, et al. Advanced Materials, 2018, 30(5), e1704609.
12 Qiu H J, Du P, Hu K, et al. Advanced Materials, 2019, 31(19), e1900843.
13 Zhao H, Jiang R, Zhang Y, et al. Journal of Materials Chemistry A, 2021, 9(9), 5848.
14 Yan T, Li T, Xu J, et al. ACS Energy Letters, 2021,6, 1795.
15 Zhang Y Z, Wang Y, Cheng T, et al. Chem Soc Rev, 2019, 48(12), 3229.
16 Yang P, Wu Z, Jiang Y, et al. Advanced Energy Materials, 2018, 8(26), e1801392.
17 Xiao J, Zhan H, Wang X, et al. Nature Nanotechnology, 2020, 15(8), 683.
21070040-1218 Wu J, Zhang Q E, Wang J, et al. Energy & Environmental Science, 2018, 11(5), 1280.
19 Heo Y J, Lee J W, Son Y R, et al. Advanced Energy Materials, 2018, 8(27), e1801854.
20 Ye M, Zhang Z, Zhao Y, et al. Joule, 2018, 2(2), 245.
21 Cui Z, Han Y, Huang Q, et al. Nanoscale, 2018, 10(15), 6806.
22 Tang J, Hua Q S, Yuan J S, et al. Materials Reports, 2017, 9, 10 (in Chinese).
唐捷, 华青松, 元金石,等. 材料导报, 2017, 9, 10.
23 Chen J, Xu H. Materials Reports, 2017, 9(31), 9 (in Chinese).
陈坚,徐晖.材料导报, 2017, 9(31), 9.
24 Dong W J, Kong L B, Kang L, et al. Materials Reports, 2018, 32(17), 2912 (in Chinese).
董文举, 孔令斌, 康龙,等. 材料导报, 2018, 32(17), 2912.
25 Yao B, Peng H, Zhang H, et al. Nano Letters, 2021, 21(9), 3731.
26 Raza W, Ali F, Raza N, et al. Nano Energy, 2018,52, 441.
27 Liu Y, Yao J, Li G. Materials Letters, 2020, 266, e127505.
28 Nasir F,Mohammad M A. IEEE Access, 2020,8, 28367.
29 Wang M, Yang J, Liu S, et al. J Colloid Interface Science, 2020,560, 69.
30 Yao B, Chandrasekaran S, Zhang H, et al. Advanced Materials, 2020, 32(8), e1906652.
31 Cao L, Zhu J, Li Y, et al. Journal of Materials Chemistry A, 2014, 2(32), 13136.
32 BoopathiRaja R,Parthibavarman M. Electrochimica Acta, 2020,346, e136270.
33 Xu Y, Schwab M G, Strudwick A J, et al. Advanced Energy Materials, 2013, 3(8), 1035.
34 Lacerda G R D B S, Dos Santos Junior G A, Rocco M L M, et al. Electrochimica Acta, 2020,335, e135637.
35 Fan W, Zhang C, Tjiu W W, et al. ACS Applied Materials Interfaces, 2013, 5(8), 3382.
36 Feng L, Wang K, Zhang X, et al. Advanced Functional Materials, 2018, 28(4), e1704463.
37 Tan P, Zhu A, Qiao L, et al. J Colloid Interface Science, 2019,533, 452.
38 Shen K, Ding J, Yang S. Advanced Energy Materials, 2018, 8(20), e1800408.
39 Xue J, Gao L, Hu X, et al. Nano-Micro Letters, 2019, 11(1), e46.
40 Chang P, Mei H, Tan Y, et al. Journal of Materials Chemistry A, 2020, 8(27), 13646.
41 Lu C, Yan Y, Zhai T, et al. Batteries & Supercaps, 2020, 3(6), 534.
42 Yao B, Chandrasekaran S, Zhang J, et al. Joule, 2019,3, 459.
43 Giannakou P, Masteghin M G, Slade R C T, et al. Journal of Materials Chemistry A, 2019, 7(37), 21496.
44 Jing C, Guo X, Xia L, et al. Chemical Engineering Journal, 2020,379, e122305.
45 Mohammadi A, Arsalani N, Tabrizi A G, et al. Chemical Engineering Journal, 2018,334, 66.
46 Geng P, Zheng S, Tang H, et al. Advanced Energy Materials, 2018, 8(15), e1703259.
47 Chen H L. Preparation and electrochemical properties of graphene/nickel-cobalt compound composite materials. Master’s thesis, Zhengzhou University, China, 2019 (in Chinese).
陈慧兰. 石墨烯/镍钴化合物复合材料的制备及其电化学性能研究. 硕士学位论文, 郑州大学, 2019.
48 Karuppaiah M, Sakthivel P, Asaithambi S, et al. Electrochimica Acta, 2020,362, e137169.
49 Kumar S, Saeed G, Zhu L, et al. Chemical Engineering Journal, 2021,403, e126352.
50 Zhang L L,Zhao X S. Chem Soc Rev, 2009, 38(9), 2520.
51 Strauss V, Marsh K, Kowal M D, et al. Advanced Materials, 2018, 30(8), e1704449.
52 Yang W, Yang W, Kong L, et al. Carbon, 2018,127, 557.
53 Zhang J, Liang W, Zhi L, et al. Materials Letters, 2020,278, e128430.
54 Jiang J, Nie P, Fang S, et al. Chinese Chemical Letters, 2018, 29(4), 624.
55 Zhang D, Wang J, Wang Q, et al. Journal of Energy Storage, 2019,25, e100904.
56 Zhang C, Du H, Ma K, et al. Advanced Energy Materials, 2020, 10(43), e2002132.
57 Wang L, Zhang Q, Zhu J, et al. Energy Storage Materials, 2019,16, 37.
58 Li P, Jin Z, Peng L, et al. Advanced Materials, 2018, 30(18), e1800124.
59 Ma W, Li W, Li M, et al. Journal of Materials Chemistry A, 2020, 8(47), 25355.
60 Sasikala S P, Lee K E, Lim J, et al. ACS Nano, 2017, 11(9), 9424.
61 Li H, Tao Y, Zheng X, et al. Energy & Environmental Science, 2016, 9(10), 3135.
62 Li H Y, Gong C D,Huang K Q, et al. Materials Reports, 2018(9), 1385 (in Chinese).
李恒月, 龚辰迪, 黄可卿,等. 材料导报, 2018(9), 1385.
63 Shabangoli Y, Rahmanifar M S, El-Kady M F, et al. Advanced Energy Materials, 2018, 8(34), e1802869.
64 Zhu J, Cao L, Wu Y, et al. Nano Letters, 2013, 13(11), 5408.
65 Guo H, Zhao H, Niu H, et al. ACS Nano, 2021, 15(4), 10768.
66 Cardosoa R M, Silvaa P R L, Limaa A P, et al. Sensors and Actuators B:Chemical, 2020, 307, 127621.
67 Kurra N, Jiang Q, Nayak P, et al. Nano Today, 2019,24, 81.
68 Zhao C, Wang C, Gorkin R, et al. Electrochemistry Communications, 2014, 41, 20.
69 Huang Z,Yuan B. Chinese Chemical Letters, 2018, 29(4), 596.
70 Liang J, Tian B, Li S, et al. Advanced Energy Materials, 2020, 10(12), e2000022.
71 Shao Y, Fu J H, Cao Z, et al. ACS Nano, 2020, 14(10), 14247.
72 Zhu C, Liu T, Qian F, et al. Nano Letters, 2016, 16(6), 3448.
73 Nathan-Walleser T, Lazar I-M, Fabritius M, et al. Advanced Functional Materials, 2014, 24(29), 4706.
74 Fan Z, Wei C, Yu L, et al. ACS Nano, 2020, 14(1), 867.
75 Orangi J, Hamade F, Davis V A, et al. ACS Nano, 2020, 14(1), 640.
76 Liu L, Ying G, Wen D, et al. Materials & Design, 2021,197, e109276.
77 Liang J, Zhu G, Wang C, et al. Advanced Energy Materials, 2017, 7(3), e1601208.
78 Sun G, An J, Chua C K, et al. Electrochemistry Communications, 2015,51, 33.
79 Wang T, Li L, Tian X, et al. Electrochimica Acta, 2019,319, 245.
80 Liu T, Zhu C, Kou T, et al. Chem Nano Mat, 2016, 2(7), 635.
81 Moyano J J, Gómez-Gómez A, Pérez-Coll D, et al. Carbon, 2019,151, 94.
82 Kang W, Zeng L, Ling S, et al. Energy Storage Materials, 2021, 35, 345.
83 Liu S, Bastola A K, Li L. ACS Applied Materials Interfaces, 2017, 9(47), 41473.
84 Cheng Z, Landish B, Chi Z, et al. Materials Science & Engineering C, 2018,82, 244.
85 Poudeh L H, Okan B S, Zanjani J S M, et al. RSC Advances, 2015, 5(111), 91147.
86 Kang M S, Kang J I, Le Thi P, et al. ACS Macro Letters, 2021, 10(4), 426.
87 Lu R, Zhang W, He Y, et al. Biotechnol Bioeng, 2021, 118(2), 1006.
88 Li W, Wang J, Ren J, et al. Advanced Materials, 2013, 25(46), 6737.
89 Yadav S,Devi A. Journal of Energy Storage, 2020,30, e101486.
90 Augustyn V, Simon P, Dunn B. Energy & Environmental Science, 2014, 7(5), 1597.
91 Tian X, Tang K, Jin H, et al. Carbon, 2019,155, 562.
92 He Y, Chen W, Li X, et al. ACS Nano, 2013,7, 174.
93 Zhai T, Wang F, Yu M, et al. Nanoscale, 2013, 5(15), 6790.
94 Jayakumar A, Yoon Y J, Wang R, et al. RSC Advances, 2015, 5(114), 94388.
95 Huang W X, Li J, Xu Y H. Materials Reports, 2018, 32(15), 46 (in Chinese).
黄文欣, 李军, 徐云鹤.材料导报, 2018, 32(15), 46.
96 Shen P C, Su C, Lin Y, et al. Nature, 2021, 593(7858), 211.
97 Wang M, Wang Y, Dou H, et al. Ceramics International, 2016, 42(8), 9858.
98 Nandhini S,Muralidharan G. Electrochimica Acta, 2021,365, e137367.
99 Li B, Tian Z, Li H, et al. Electrochimica Acta, 2019,314, 32.
100 Ma T, Zhang M, Liu H, et al. Electrochimica Acta, 2019,322, e134762.
101 Parra D, Swierczynski M, Stroe D I, et al. Renewable and Sustainable Energy Reviews, 2017, 79, 730.
102 Liang J, Tian B, Li S, et al. Advanced Energy Materials, 2020, 10(12), e2000022.
103 Acerce M, Voiry D, Chhowalla M. Nature Nanotechnology, 2015, 10(4), 313.
104 Zhou C, Wang J, Yan X, et al. Ceramics International, 2019, 45(17), 21534.
105 Singh K, Kumar S, Agarwal K, et al. Scientific Reports, 2017, 7(1), 9458.
106 Han C, Tian Z, Dou H, et al. Chinese Chemical Letters, 2018, 29(4), 606.
107 Bissett M A, Kinloch I A, Dryfe R A. ACS Applied Materials Interfaces, 2015, 7(31), 17388.
108 Tang X W. Highly-interconnected graphene-based hybrid aerogels and electrochemical performances. Ph.D. thesis. Shanghai Jiaotong University, China, 2018 (in Chinese).
唐兴伟. 高连通石墨烯基气凝胶的制备及其电化学性能研究. 博士学位论文, 上海交通大学, 2018.
109 Poudeh L H, Cakiroglu D, Cebeci F C, et al. ACS Omega, 2018, 3(6), 6400.
110 Kelly B E, Bhattacharya I, Heidari H, et al. Science, 2019,363, 1075.
111 Wang D X, Wang L, Yu L M. Materials Reports, 2018, 32(17), 2907 (in Chinese).
王德玄, 王磊, 于良民.材料导报, 2018, 32(17), 2907.
[1] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[2] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[3] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[4] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[5] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[6] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[7] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[8] 盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
[9] 周振豪, 姜勇刚, 冯军宗, 李良军, 冯坚. 直写成型制备多孔陶瓷技术研究进展[J]. 材料导报, 2023, 37(4): 20120004-7.
[10] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[11] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[12] 吴海华, 杨增辉, 刘力, 张忍静, 邓开鑫, 李言. 三层石墨烯吸波体熔融沉积成形及层间材料分布对吸波性能的影响[J]. 材料导报, 2023, 37(2): 21080161-7.
[13] 范存霞, 谷雨, 邱星晨, 李长明, 郭春显. 基于石墨烯/氯化血红素复合物纳米酶可视化检测谷胱甘肽[J]. 材料导报, 2023, 37(2): 22030004-8.
[14] 徐卓越, 李辉, 张大旺, 孙雪梅, 赵柯飞, 王悦莹. 建筑3D打印用胶凝材料及其相关性能研究进展[J]. 材料导报, 2023, 37(12): 21080117-14.
[15] 朱伶俐, 杨章, 赵宇, 管学茂, 武喜凯. 钢渣-矿渣复合水泥基材料3D打印性能[J]. 材料导报, 2023, 37(12): 21100196-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed