Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21080011-7    https://doi.org/10.11896/cldb.21080011
  高分子与聚合物基复合材料 |
丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性
白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹*
福建农林大学材料工程学院,福州 350108
Activated Carbon Derived from Loofah Sponge with Three-dimensional Hierarchical Porous Structure and Its Energy Storage Performance
BAI Xiaojie, SONG Shengnan, ZHUO Zuyou, LIU Haixiong, CHEN Yandan*
College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108,China
下载:  全 文 ( PDF ) ( 10881KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 丝瓜络具有立体管束状结构,在制备生物质基三维(3D)多孔炭材料方面具有独特优势。以丝瓜络为原料,聚磷酸铵为活化剂、形貌保护剂和氮掺杂源,确立了制备丝瓜络基3D多孔炭材料的优化工艺条件。实验结果表明,经过预炭化处理所制得的样品CAC-1-550,比表面积为738 m2/g,总孔容为0.43 cm3/g,较一步炭化活化法所制样品AC-1-550均有明显提高。电化学测试结果表明,在电流密度为0.5 A/g时,CAC-1-550的比电容可达260 F/g,且经6 000次的循环充放电后,电容保持率为116%,循环稳定性能优良。在功率密度为1 674 W/kg时,最高能量密度为37.2 Wh/kg,优于绝大多数文献中所报道的超级电容器炭电极材料。当功率密度大幅增加到33.5 kW/kg时,能量密度仍达9.3 Wh/kg,CAC-1-550展现出良好的电化学性能,并显示出作为超级电容器的电极材料具有很大的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白小杰
宋生南
卓祖优
刘海雄
陈燕丹
关键词:  丝瓜络  聚磷酸铵  3D多级孔炭  超级电容器  电极材料    
Abstract: Loofah sponge with three-dimensional bundled micro-structure has unique advantages in the preparation of biomass-based 3D porous carbon materials. Using loofah sponge as raw material and ammonium polyphosphate as activator, morphology protector and nitrogen doping source, the optimal process conditions for the preparation of luffa-based 3D porous carbon materials were established. The results showed that the specific surface area and total pore volume of the CAC-1-550 sample prepared with pre-carbonization treatment were 738 m2/g and 0.43 cm3/g, respectively, which were significantly higher than those of AC-1-550. The electrochemical test results showed that the specific capacitance of CAC-1-550 could reach 260 F/g at 0.5 A/g, and the capacitance retention rate was 116% after 6 000 cycles of charge and discharge. When the power density was 1 674 W/kg, the maximum energy density could reach 37.2 Wh/kg, which was better than that of most carbon electrode materials of supercapacitor widely reported in literatures. When the power density drastically increased to 33.5 kW/kg, the energy density was still up to 9.3 Wh/kg, CAC-1-550 showed appealing electrochemical performance and indicated great potential as an electrode material for supercapacitor applications.
Key words:  loofah sponge    ammonium polyphosphate    3D hierarchical porous carbon    electrode material
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TQ424.1  
基金资助: 国家自然科学基金(31870561)
通讯作者:  *陈燕丹,福建农林大学教授、博士研究生导师。2005年7月毕业于中国科学院福建物质结构研究所物理化学专业,获理学博士学位。2005年8月至今任教于福建农林大学材料工程学院。研究方向为生物质资源高效转化利用。近年来在国内外刊物上发表学术论文30多篇,其中被SCI/EI收录20多篇。作为第一发明人已有5项国家发明获得授权。fjaucyd@163.com   
作者简介:  †共同第一作者
白小杰,2021年6月毕业于福建农林大学,获得工程硕士学位,研究方向为生物质能源与炭材料。宋生南,2020年6月本科毕业于周口师范学院,现为福建农林大学材料工程学院硕士在读研究生,研究方向为生物质化学与材料工程。
引用本文:    
白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
BAI Xiaojie, SONG Shengnan, ZHUO Zuyou, LIU Haixiong, CHEN Yandan. Activated Carbon Derived from Loofah Sponge with Three-dimensional Hierarchical Porous Structure and Its Energy Storage Performance. Materials Reports, 2023, 37(5): 21080011-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080011  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21080011
1 Yin J, Zhang W L, Alhebshi N A, et al. Small Methods, 2020, 4(3), 1900853.
2 Liu H J, Wang J, Wang C X, et al. Advanced Energy Materials, 2011, 1(6), 1.
3 Li X, Zhang J, Liu B, et al. Journal of Cleaner Production, 2021, 310, 127428.
4 Xie L J, Su F Y, Xie L F, et al. Materials Chemistry Frontiers, 2020, 4(9), 2610.
5 Hsu H L, Miah M, Saha S K, et al. Materials Today Chemistry, 2021, 22, 100569.
6 Zhang Y D, Hu Z A, Liang Y R, et al. Journal of Materials Chemistry A, 2015, 3(29), 15057.
7 Jiang H, Lee P S, Li C Z. Energy & Environmental Science, 2013, 6(1), 41.
8 Liu T Y, Zhang F, Song Y, et al. Journal of Materials Chemistry A, 2017, 5(34), 17705.
9 Liu X G, Ma C D, Li J, et al. Journal of Power Sources, 2019, 412(1), 1.
10 Liang Q, Ye L, Huang Z H, et al. Nanoscale, 2014, 6(22), 13813.
11 Li D N. Jorunal of Functional Materials, 2021, 52(2), 2078.
李丹妮. 功能材料, 2021, 52(2), 2078.
12 Shaker M, Ghazvini A A S, Cao W, et al. New Carbon Materials, 2021, 36(3), 546.
13 Liu G S. Jorunal of Functional Materials, 2022, 53(8), 8078.
刘高尚. 功能材料, 2022, 53(8), 8078.
14 Shi J Y. Journal of Beihua University (Natural Science), 2019, 20(5), 561.
时君友. 北华大学学报(自然科学版), 2019, 20(5), 561.
15 Xie D, Xia X H, Tang W J, et al. Journal of Materials Chemistry A, 2017, 5(16), 7578.
16 Wu C. Microencapsulation of ammonium polyphosphate (APP) and its application. Master's Thesis, Beijing University of Chemical Technology, China, 2019(in Chinese).
吴灿. 聚磷酸铵(APP)微胶囊化及其应用. 硕士学位论文, 北京化工大学, 2019.
17 Zhang Z J, Mei X J. Flame Retardant Materials and Technology, 2004(2), 5(in Chinese).
张泽江, 梅秀娟. 阻燃材料与技术, 2004(2), 5.
18 Cui J. Modern Plastic Processing and Application, 1999(2), 36(in Chinese).
崔健. 现代塑料加工应用, 1999(2), 36.
19 Deng J. Preparation of carbon and its composites and application of electrochemical energy storage. Master's Thesis, Zhejiang University, China, 2018(in Chinese).
邓江. 炭及其复合材料的制备及电化学储能应用研究. 硕士学位论文, 浙江大学, 2018.
20 Mei X W. Preparation and capacitance of lignin-based porous carbon materials. Master's Thesis, Beijing Forestry University, China, 2020(in Chinese).
梅修文. 木质素基多孔炭材料的制备及其电容性能研究. 硕士学位论文, 北京林业大学, 2020.
21 Guo C Z, Wen B X, Liao W L, et al. Journal of Alloys and Compounds, 2016, 686, 874.
22 Zhao X, Li C, Zhang X. et al. Chemistry Select, 2017, 2(21), 6194.
23 Duan B, Gao X, Yao X, et al. Nano Energy, 2016, 27, 482.
24 Wei T Y, Wei X L, Gao Y, et al. ElectrochimicaActa, 2015, 169, 186.
25 Ruan C P, Ai K L, Lu L H. RSC Advances, 2014, 4(58), 30887.
26 Zhang Y K, Wu K, Zhang K, et al. Acta Polymerica Sinica, 2012(7), 759(in Chinese).
张延奎, 吴昆, 张卡, 等. 高分子学报, 2012(7), 759.
27 Mu B, Zhang W B, Wang A Q. Journal of Nanoparticle Research, 2014, 16(6), 2432.
28 Wang G, Zhang L, Zhang J. Chemical Society Reviews, 2012, 41(2), 797.
29 Ouyang T, Cheng K, Yang F, et al. Journal of Materials Chemistry A, 2017, 5(28), 14551.
30 Peng H, Ma G F, Sun K J, et al. ACS Applied Materials & Interfaces, 2014, 6(23), 20795.
31 Ling Z, Wang Z Y, Zhang M D, et al. Advanced Functional Materials, 2016, 26(1), 111.
32 Yang L Y, Feng Y, Cao M J, et al. Materials Chemistry and Physics, 2019, 238, 121956.
33 Gopalakrishnan A, Badhulika S. Renewable Energy, 2020, 161, 173.
34 Vinayagam M, Babu R S, Sivasamy A, et al. Biomass and Bioenergy, 2020, 143, 105838.
35 He J, Zhang D, Wang Y, et al. Applied Surface Science, 2020, 515, 146020.
36 Xbx A, Bing Z A, Qin W A, et al. Journal of Colloid and Interface Science, 2021, 594, 290.
[1] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[2] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[3] 耿亚茹, 杨国超, 徐冰冰, 张求慧. 利用静电吸附构建生物基核壳阻燃剂用于阻燃改性牛皮纸[J]. 材料导报, 2023, 37(5): 21070085-7.
[4] 盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
[5] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[6] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[7] 王雅君, 白秋红, 伍根成, 王正, 李聪, 申烨华. 纳米纤维素基复合材料及其用于柔性储能器件的研究进展[J]. 材料导报, 2022, 36(23): 21010198-7.
[8] 赵磊, 彭元佑, 李媛, 张倩倩, 冉奋. 聚乙二醇分子刷接枝改性碳微球及其电化学性能[J]. 材料导报, 2022, 36(21): 21080112-7.
[9] 胡竟志, 徐照华, 沈超, 谢科予. 三维打印技术在电化学储能器件中的应用研究进展[J]. 材料导报, 2022, 36(20): 20100151-11.
[10] 周海云, 何明基, 张磊, 王红强, 梁华彬, 杨健华, 钟新仙. 以Nafion和离子液体作为软模板合成聚苯胺及其在超级电容器中的应用[J]. 材料导报, 2022, 36(18): 21050119-6.
[11] 牛晓勤, 康小雅, 马应霞, 王嘉伟, 陈新权, 田虎, 陈玉红, 冉奋. 新型球状Ni/Co-MOFs电极材料的构筑及电化学性能研究[J]. 材料导报, 2022, 36(14): 21050021-7.
[12] 李搛倬, 传秀云, 杨扬, 刘芳芳, 齐鹏越. 黄铁矿型FeS2的制备及其储能应用[J]. 材料导报, 2022, 36(1): 20080005-13.
[13] 李凯旋, 王焕磊. 生物多糖衍生的超级电容器用碳电极材料研究进展[J]. 材料导报, 2022, 36(1): 20080007-13.
[14] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[15] 高君华, 黄浩, 曾冲, 郑瑞伦. 孔隙率对传感器多孔电极材料导电性能的影响[J]. 材料导报, 2021, 35(18): 18018-18023.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed