Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21080027-6    https://doi.org/10.11896/cldb.21080027
  高分子与聚合物基复合材料 |
木质素碳点的优化合成及用于金属离子的检测
杜鹏, 刘洁, 张静, 马婕妤, 耿艳艳, 曹丰*
苏州科技大学化学与生命科学学院,江苏 苏州 215011
Optimized Synthesis of Lignin Carbon Dots and Its Application in Metal Ions Detection
DU Peng, LIU Jie, ZHANG Jing, MA Jieyu, GENG Yanyan, CAO Feng*
College of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215011,Jiangsu, China
下载:  全 文 ( PDF ) ( 15232KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以废弃的木质素为前驱体,采用水热法,绿色、便捷地制备了木质素碳点(L-CDs)。利用透射电子显微镜、紫外可见分光光度计、傅里叶红外光谱、荧光光谱对L-CDs形貌和光学性质进行了研究。结果表明,制备的碳点具有较小的尺寸,尺寸主要分布在2~4 nm,平均粒径为3.2 nm,其表面有大量的羟基等含氧基团,表现出良好的分散性,最大激发波长与最大发射波长分别为370 nm和469 nm。L-CDs在365 nm紫外灯的照射下发出强烈的蓝色荧光,以硫酸奎宁为参比,L-CDs的荧光量子产率为12%,与多数已报道的生物质碳点具有可比性。通过对反应条件进行优化,L-CDs对水中Fe3+传感灵敏,检测的线性范围为5~400 μmol/L,检测限为1.69 μmol/L,其在实际水样的检测中仍有着较高的线性相关性。L-CDs在中性及碱性环境中有较强的荧光强度,有望用于自然水样中其他有机污染物的检测。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜鹏
刘洁
张静
马婕妤
耿艳艳
曹丰
关键词:  木质素  生物质碳点  优化合成  金属离子检测    
Abstract: Lignin carbon dots(L-CDs)were facilely fabricated by a eco-friendly hydrothermal method using natural biomass lignin as raw material. The morphology and optical properties of L-CDs were studied by transmission electron microscopy, UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy and fluorescence spectroscopy. The results indicated that the L-CDs have a small size, which is mainly distributed in 2—4 nm with an average particle size of 3.2 nm. There are a large number of hydroxyl groups and other oxygen-containing groups on the surface of L-CDs, which are consistent with the good dispersion of the carbon dots prepared. The maximum excitation wavelength and maximum emission wavelength are 370 nm and 469 nm. L-CDs emit strong blue fluorescence under the irradiation of 365 nm ultraviolet lamp. Using quinine sulfate as a reference, the fluorescence quantum yield of L-CDs is 12%, which is comparable with most reported biomass carbon dots. By optimizing the reaction conditions, the sensitive sensing of L-CDs on Fe3+ in water is realized. The method showed a linear range of 5—400 μmol/L with a detection limit of 1.69 μmol/L, showing excellent sensitivity and selectivity. There is still a high linear correlation in the detection of actual water samples. Moreover, L-CDs have strong fluorescence intensity in neutral and alkaline environments, which is expected to be used for the determination of organic pollutants in natural water samples.
Key words:  lignin    biomass carbon dots    optimized synthesis    metal ions detection
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  O657.3  
基金资助: 国家自然科学基金(21702143);江苏省自然科学基金(BK2017377);江苏省研究生科研与实践创新计划项目(SJCX21_1400)
通讯作者:  *曹丰,博士,讲师,现任苏州科技大学化学生命科学学院材料化学系副主任。2005年本科毕业于南京工业大学材料科学与工程学院材料化学专业,2010年于南京工业大学材料物理与化学专业获硕士学位,2010年获工学博士学位。2010年进入苏州科技学院化学与生物工程学院材料化学教研室从事教学和科研工作。主要从事生物废弃物基功能碳材料和生物高分子材料的改性和应用研究。累计发表论文18篇,获授权专利5项,参与科研课题5项。caofeng@mail.usts.edu.cn   
作者简介:  杜鹏,硕士研究生,2020年于合肥城市学院取得学士学位,同年就读于苏州科技大学,主要从事碳纳米材料的合成及其用于环境污染物检测。
引用本文:    
杜鹏, 刘洁, 张静, 马婕妤, 耿艳艳, 曹丰. 木质素碳点的优化合成及用于金属离子的检测[J]. 材料导报, 2023, 37(5): 21080027-6.
DU Peng, LIU Jie, ZHANG Jing, MA Jieyu, GENG Yanyan, CAO Feng. Optimized Synthesis of Lignin Carbon Dots and Its Application in Metal Ions Detection. Materials Reports, 2023, 37(5): 21080027-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080027  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21080027
1 Kausar A. Polymer-plastics Technology and Materials, 2021, 60(7), 695.
2 Omoriyekomwan J E, Tahmasebi A, Dou J X, et al. Fuel Processing Technology, 2021, 214, 106686.
3 Kroener A, Hirsch T. Frontiers in Chemistry, 2020, 7, 927.
4 Liu R H, Li H T, Kong W Q, et al. Materials Research Bulletin, 2013, 48(7), 2529.
5 Tammina S K, Wan Y, Li Y Y, et al. Journal of Photochemistry and Photobiology B-Biology, 2020, 202, 111734.
6 Li C M, Qin Z J, Wang M N, et al. Analytica Chimica Acta, 2020, 1104, 125.
7 Su Y, Liu S, Guan Y Y, et al. Biomaterials, 2020, 255, 120110.
8 Cai H J, Zhu Y L, Xu H L, et al. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2021, 246, 119033.
9 Liu F, Li Z Y, Li Y, et al. Carbon, 2021, 181, 9.
10 Qi H T, Zhang H Q, Wu X M, et al. Chemistry-An Asian Journal, 2020, 15(8), 1281.
11 Su W, Guo R H, Yuan F L, et al. Journal of Physical Chemistry Letters, 2020, 11(4), 1357.
12 Wang H T, Bi J R, Zhu B I, et al. Current Medicinal Chemistry, 2018, 25(25), 2894.
13 Xia J F, Kawamura Y, Suehiro T, et al. Drug Discoveries & Therapeutics, 2019, 13(2), 114.
14 Kumar V B, Borenstein A, Markovsky B, et al. Journal of Physical Chemistry C, 2016, 120(25), 13406.
15 Fu L, Wang A W, Lai G S, et al. Microchimica Acta, 2018, 185(2), 87.
16 Wang Q, Gao Y X, Wang B Y, et al. Journal of Materials Chemistry C, 2020, 8(13), 4343.
17 Chen L, Zheng J X, Du Q, et al. Optical Materials, 2020, 109, 110346.
18 Pylypchuk I, Selyanchyn R, Budnyak T, et al. Membranes, 2021, 11(3), 204.
19 Sun Y C, Wang T T, Sun X Y, et al. Industrial Crops and Products, 2021, 166, 113473.
20 Lyu D, Zhang T C, Wang D Y, et al. Industrial Crops & Products, 2021, 170, 113750.
21 Chen W X, Hu C F, Yang Y H, et al. Materials, 2016, 9(3), 184.
22 Ding H, Li X H, Chen X B, et al. Journal of Applied Physics, 2020, 127(23), 231101.
23 Chio C L, Sain M, Qin W S. Renewable & Sustainable Energy Reviews, 2019, 107, 232.
24 Zhu S J, Meng Q N, Wang L, et al. Angewandte Chemie-International Edition, 2013, 52(14), 3953.
25 He Q, Yu Y X, Wang J, et al. Industrial & Engineering Chemistry Research, 2021, 60(12), 4552.
26 Tae H W, Yang H K, Kee M B. New Physics:Sae Mulli, 2020, 70(2), 125.
27 Ding H, Li X H, Chen X B, et al. Journal of Applied Physics, 2020, 127(23), 231101.
28 Zhu L L, Shen D K, Liu Q, et al. Applied Surface Science, 2021, 565, 150526.
29 Peng J, Gao W, Gupta B K, et al. Nano Letters, 2012, 12(2), 844.
30 Zu F L, Yan F Y, Bai Z J, et al. Microchimica Acta, 2017, 184(7), 1899.
31 Batool M, Junaid H M, Tabassum S, et al. Critical Reviews in Analytical Chemistry, 2020, 52(4), 756.
32 Vikneswaran R, Ramesh S, Yahya R. Materials Letters, 2014, 136, 179.
33 Wang R X, Wang X F, Sun Y M. Sensors and Actuators B-Chemical, 2017, 241, 73.
34 Nair S S P, Kottam N, Kumar S G P. Journal of Fluorescence, 2020, 30(2), 357.
35 Zhang J Q, Yan J P, Wang Y T, et al. Journal of Nanoscience and Nanotechnology, 2018, 18(7), 4457.
36 Sh Y X, Liu X, Wang M, et al. International Journal of Biological Macromolecules, 2019, 128, 537.
[1] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[2] 陈浩伟, 余先纯, 张传艳, 李銮玉, 孙德林, 郝晓峰. 木质素基模板炭的制备及电化学性能[J]. 材料导报, 2021, 35(24): 24164-24171.
[3] 陈欢, 汪宗涛, 陈仕清, 范东斌. 木质素环氧化接枝物及其制备大豆蛋白胶黏剂研究[J]. 材料导报, 2021, 35(20): 20190-20194.
[4] 余先纯, 孙德林, 计晓琴, 王张恒. 木质素基碳纳米片组装木陶瓷电极的结构调控与电化学储能[J]. 材料导报, 2021, 35(2): 2012-2018.
[5] 杨淑敏, 刘杏娥, 尚莉莉, 马建锋, 田根林, 江泽慧. 竹材木质素特性及表征方法研究进展[J]. 材料导报, 2020, 34(7): 7177-7182.
[6] 何正文, 田红, 黄章俊, 胡章茂, 刘威. 基于量子化学理论的热解温度对木质素二聚体热解产物分布的影响[J]. 材料导报, 2020, 34(6): 6180-6185.
[7] 王桂平, 喻伯鸣, 敖日格勒. 木质素基磁性多孔复合纳米碳纤维的制备及微波吸收性能[J]. 材料导报, 2020, 34(20): 20159-20164.
[8] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[9] 计晓琴, 孙德林, 余先纯, 郝晓峰, 陈新义, 朱志红. Fe3+掺杂活化木质素基木材陶瓷的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3390-3395.
[10] 刘兰燕,宋俊,程博闻,薛文池,郑云波. 木质素基碳纤维制备的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 405-411.
[11] 崔玉虎, 王奇, 苟光俊, 姜曼, 周祚万, 张胜利, 付金丽. 木质素催化降解液化的研究进展[J]. 《材料导报》期刊社, 2017, 31(5): 112-116.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed