Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7177-7182    https://doi.org/10.11896/cldb.19060064
  高分子与聚合物基复合材料 |
竹材木质素特性及表征方法研究进展
杨淑敏, 刘杏娥, 尚莉莉, 马建锋, 田根林, 江泽慧
国际竹藤中心竹藤科学与技术重点实验室,北京 100102
The Characteristics and Representation Methods of Lignin for Bamboo
YANG Shumin, LIU Xing’e, SHANG Lili, MA Jianfeng, TIAN Genlin, JIANG Zehui
Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
下载:  全 文 ( PDF ) ( 2910KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 竹材作为一种天然纤维增强复合材料,性能优良,可在一定程度上缓解木材资源短缺矛盾。木质素的异质性分布和分子结构是决定竹材性能的因素之一,是竹材解剖和化学基础研究中的热点和难点。竹纤维和基本薄壁组织的木质化过程在竹材的第一个生长季节内逐渐加强。纤维细胞壁呈现宽窄交替的多层结构,木质化过程是从细胞腔向复合胞间层推进。导管和纤维细胞在茎伸长生长完成之前开始木质化,而薄壁组织的木质化过程完成在茎伸长生长之后。竹木质素属于G-S-H型,除有愈创木基(G)和紫丁香基(S)两类单体外,还含有相当数量的对羟苯基型(H)结构,同时其结构中还存在对香豆酸酯键联接。本文对竹材细胞壁结构以及木质素微区分布、分离方法和分子结构的研究进展进行了综述,期望可以为竹材力学性能适应性、加工工艺和高附加值利用提供参考数据。
   研究竹材木质素在细胞壁的微区分布的方法有荧光显微法、紫外显微分光光度计法、扫描电镜技术、X射线能谱分析法、透射显微镜技术和共聚焦激光扫描显微镜技术等,其中还结合了组织或细胞化学技术和免疫细胞化学技术。共聚焦拉曼显微镜结合光谱成像技术和纳米红外技术为植物细胞壁化学成分微区分布研究提供了强有力的手段。本文概述了木质素的分离方法,主要可以分为:磨木木质素、酶解木质素以及多种化学和物理手段结合的酶解-酸解木质素、两次球磨和两次酶解的残渣木质素制备方法,并评价了不同方法所得木质素的结构和纯度等优缺点。此外,化学预处理因试剂不同,分离出来的木质素有酸木质素、碱木质素、溶剂型木质素等,特别是对甲苯磺酸、离子液体、低共溶剂等绿色溶剂的使用实现了木质素的高效分离。木质素分子结构的研究方法有湿部化学法,包括硝基苯氧化法、高锰酸钾氧化法、衍生后还原降解法、硫代酸解法、裂解气质联用法等。湿部化学法可以获得木质素的结构信息,但是对官能团表征还不能获得完整的信息。光谱法可以对木质素及官能团进行定性和定量分析,可以获得木质素完整的结构信息。光谱法主要包括紫外光谱法、傅里叶红外光谱法和核磁共振光谱法,本文重点综述了碳谱和二维异核单量子相干谱等先进液态核磁共振技术表征木质素的分子结构的最新进展,并提出了该领域今后的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨淑敏
刘杏娥
尚莉莉
马建锋
田根林
江泽慧
关键词:  竹材  木质素  异质性分布  显微光谱技术  分子结构    
Abstract: Bamboo is a natural fibre reinforced composites, with excellent performance, which is an alternative to shortage of wood resource to a certain extent. Heterogeneous distribution and molecular structure of lignin is one of the factors that determine the performance, and it is the key and difficult basic research in anatomy and chemistry of bamboo. The lignification of bamboo fiber and parenchyma cell incrementally strengthens du-ring the first growing season. The bamboo fibres exhibit a polylamellate structure, and the lignification advances from the cell wall near lumen to compound middle lamellae. Vessels and fibre cells begin to lignify before stem elongation growth is complete, while lignification of parenchyma is completed after stem elongation. Bamboo lignin are composed of guaiacyl (G) units and syringyl (S) units, and it also contains a considerable amount of p-hydroxyphenyl (H) units having ester bonds between p-coumaric acid. This paper reviewed the current advances of cell wall structure, lignin distribution, separation method and molecular structure of bamboo, then the results will be expected to provide reference data for bamboo’s mechanical property adaptability, processing technology and high value-added utilization.
The research on the lignin distribution of bamboo cell wall by means of various fluorescence microscopy, ultraviolet micro-spectrophotometry, scanning electron microscopy and energy dispersive X-ray spectroscopy, transmission microscopy and confocal laser scanning microscopy, coupled with the Wiesner and Maule reaction and immunocytochemistry technology. Confocal raman microscopy combined with spectral imaging technology, and nano-infrared technology provides a powerful means for the study of the lignin topochemistry in bamboo cell wall. It also outlines the separation method of the original lignin, which can be mainly divided into milled wood lignin, cellulolytic enzyme lignin, and a combination of various chemical and physical means of enzymatic acidolysis lignin, residual lignin through two ball milling and two enzymatic hydrolysis, and the advantages of the structure and purity of lignin obtained by different methods were evaluated. In addition, the lignin separated by chemical pretreatment due to different reagents includes acid lignin, alkali lignin, solvent lignin, etc., especially the use of green solvents such as toluenesulfonic acid, ionic liquid, low cosolvent, etc., enables efficient separation of lignin. The analytical tools to the elucidation of lignin molecular structure such as wet chemical method, including nitrobenzene oxidation, permanganate oxidation, derivatization followed by reductive cleavage, thioa-cidolysis, and pyrolysis gas chromatography-mass spectrometer (Pyr-GC-MS). Wet chemical method can obtain the lignin structure, but the complete information on the functional group characterization is not available. Spectroscopic analysis can qualitatively and quantitatively analyze the functional groups of lignin, and the complete structural information of lignin can be obtained. The spectroscopy mainly includes ultraviolet spectroscopy, Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) techniques. The latest progress in cha-racterizing the molecular structure of lignin by advanced liquid-state nuclear magnetic resonance techniques such as 13C and 2D HSQC NMR method is reviewed. In addition, prospects and future research in its field were proposed.
Key words:  bamboo    lignin    heterogeneous distribution    microspectroscopy technology    molecular structure
                    发布日期:  2020-04-10
ZTFLH:  S781.42  
基金资助: 国家科技支撑计划项目(2015BAD04B03);国家自然科学基金面上项目(31670565)
通讯作者:  yangsm@icbr.ac.cn   
作者简介:  杨淑敏,国际竹藤中心副研究员。1995年和1998年分别毕业于内蒙古农业大学林学院,2003年于日本鸟取大学木材科学与技术专业取得博士学位。主要从事木竹材生物质材料的基础性质和无损检测等研究工作。近年来,承担和参加国家级和省部级项目10余项,在木材和材料领域发表论文40余篇。目前是中国林学会竹藤资源利用分会常务委员、全国木材标准化技术委员会委员、中国林学会生物质材料科学分会委员。
江泽慧,国际木材科学院院士,中国林科院和国际竹藤中心首席科学家,教授,博士生导师,博士后指导小组成员,我国著名木(竹藤)材科学家和学科带头人。国际竹藤组织(INBAR)董事会联合主席,国际竹藤中心主任,中国花卉协会会长,国际标准化组织竹藤技术委员会(ISO TC296)技术指导委员会主任,全国木材标准化技术委员会主任,全国竹藤标准化技术委员会主任,中国竹藤品牌集群主席,国际木材解剖学会会员等。长期从事森林利用学、中国林业工程、木材学、木材解剖学的教学、科研、管理工作,先后主持或参加国家重大科技攻关项目、国家自然基金项目、攀登计划项目、科技支撑项目、重点研发项目、省市科研项目、全球环境基金(GEF)项目、国际热带木材组织(ITTO)项目和商品共同基金(CFC)项目等40余项。出版《世界主要树种木材科学特性》(中英文版)、《中国林业工程》《中国现代林业》《东南亚木材识别及用途》《世界竹藤》(中英文版)等专著50余部,发表学术论文500余篇,指导培养研究生、博士后100余名。研究成果获国家科技进步一等奖1项、二等奖3项,其他省部级奖8项;并且曾获国际木材科学院杰出贡献奖和全球竹藤事业终身成就奖等多种奖项。
引用本文:    
杨淑敏, 刘杏娥, 尚莉莉, 马建锋, 田根林, 江泽慧. 竹材木质素特性及表征方法研究进展[J]. 材料导报, 2020, 34(7): 7177-7182.
YANG Shumin, LIU Xing’e, SHANG Lili, MA Jianfeng, TIAN Genlin, JIANG Zehui. The Characteristics and Representation Methods of Lignin for Bamboo. Materials Reports, 2020, 34(7): 7177-7182.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060064  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7177
1 Li X B, Shupe T F, Peter G F, et al. Journal of Tropical Forest Science, 2007, 19(1),6.
2 Tsuyama T, Shimada N, Motoda T, et al. Journal of Wood Science, 2017, 63(6),551.
3 Xiang E L. Study on the cell wall structure and property during the growth of Moso bamboo. Master’s Thesis, Sichuan Agricultural University, China, 2018(in Chinese).
向娥琳. 毛竹生长过程中细胞壁结构与性能的变化研究. 硕士学位论文,四川农业大学, 2018.
4 Ogunbiyi Moses A, Olawale Simon O, Tudjegbe Oke E, et al. International Journal of Scientific & Technology Research, 2015, 4(11),47.
5 Li Y, Huang C, Wang L, et al. Holzforschung, 2017, 71(2),129.
6 Yang X, Wang K, Tian G, et al. European Journal of Wood Products, 2018,76(4),1303.
7 Parameswaran N, Liese W. Wood Science and Technology, 1976,10,231.
8 Parameswaran N, Liese W. Cellulose Chemistry and Technology, 1980,14(5),587.
9 Wai N N, Nanko H, Murakami K. Wood Science and Technology, 1985,3,211.
10 Murphy R J, Alvin K L. IAWA Bulletin, 1992, 13(4), 403.
11 Liu B. Formation of cell wall in development culms of Phyllostachys pubescens. Ph.D. Thesis, Chinese Academy of Forestry, China, 2008(in Chinese).
刘波.毛竹发育过程中细胞壁形成的研究. 博士学位论文,中国林业科学研究院, 2008.
12 Chen H, Tian G, Wu Z, et al. Wood and Fiber Science, 2016, 48(2),104.
13 An X. Microfibril orientations and ultrastructures of fibers wall from moso bamboo. Ph.D. Thesis, Chinese Academy of Forestry, China, 2015(in Chinese).
安鑫.毛竹纤维细胞壁微纤丝取向与超微构造研究. 博士学位论文,中国林业科学研究院, 2015.
14 Hu K L, Huang Y H, Fei B H, et al. Cellulose, 2017, 24,4611.
15 Peng G, Jiang Z, Liu X, et al. Holzforschung,2014, 68(2),223.
16 He Xinqiang, Wang Youqun, Hu Yuxi. Acta Botanica Sinica, 2000, 42(10),1003.
17 Suzuki K, Itoh T. Trees, 2001, 15(3),137.
18 Gritsch C S, Kleist G, Murphy R J. Annals of Botany, 2004, 94,497.
19 Murphy R J, Alvin K L. IAWA Journal, 1997, 18(2), 147.
20 Xu G, Shi Z, Zhao Y, et al. International Journal of Biological Macromolecules, 2019, 126, 376.
21 Dharmawardhana D P. Canadian Journal of Botany-revue Canadienne de Botanique, 1992, 70,2238.
22 Hutzler P, Fischbach R, Heller W, et al. Journal of Experimental Botany, 1998, 49,953.
23 Fergus B J, Goring D A I. Holzforchung,1970,24,113.
24 Itoh T. Holzforschung, 1990, 44,191.
25 Kim J S, Lee K H, Cho C H, et al. Holzforschung, 2008, 62,481.
26 Koch G, Kleist G. Holzforschung, 2001, 55,563.
27 Yoshizawa N, Satoh I, Yokota S, et al. Holzforschung, 1991, 45,169.
28 Lybeer B, Koch G. IAWA Journal, 2005, 26(1), 99.
29 Lybeer B, Koch G. IAWA Journal, 2005, 26(4),443.
30 Satiat-Jeunemaitre B, Martin B, Hawes C. Protoplasma, 1992, 167,33.
31 Itoh T, Ogawa T. Plant Cell Physiol, 1993, 34,87.
32 Wei P L, Ma J F, Jiang Z H, et al. Wood and Fiber Science, 2017,49(1),12.
33 Itoh T, Shimaji K. In: Proceeding XⅦ IVFRO coroup, kyoto, Japan. 1981,pp.104.
34 Liese W, Weiner G. In: Soc L, Chapaman G(eds) The bamboos. Academic, London, 1997, pp.313.
35 Lin J X,He X Q,Hu Y X,et al.Physiologia Plantarum, 2002, 114,296.
36 Yoshizawa N, Watanabe N, Yokota S, et al. IAWA Bulletin, 1990, 11(3),303.
37 Björkman A. Sevensk Paperstidn, 1956, 59(7),477.
38 Obst J R. Journal of Wood Science, 1983, 3,377.
39 Wu S, Argyropoulos D S. Journal of Pulp and Paper Science, 2003, 29(7),235.
40 Chen T, Wang B, Wu Y, et al. International Journal of Biological Macromolecules, 2017, 101,747.
41 Lu F, Ralph J. Plant Journal, 2003, 35(4), 535.
42 Yang X. Structural analysis of bamboo lignin in different growth stages and efficient separation and structural characterization of bamboo lignin in new solvent system. Master’s Thesis, Sichuan Agricultural University, China, 2019(in Chinese).
杨欣.不同生长阶段毛竹木质素的结构解析及新型溶剂体系中毛竹木质素的高效分离和结构表征.硕士学位论文, 四川农业大学, 2019.
43 Adler E. Wood Science and Technology, 1997, 11(3),169.
44 Chang H M, Cowling E B, Brown W, et al. Holzforschung, 1975, 29(5),153.
45 Solar R, Kacik F A. Cellulose Chemistry and Technology, 1995, 29(2), 123.
46 Brauns F E, Native ligninⅠ. Journal of the American Chemical Society, 1939, 61, 2120.
47 Sun N, Rahman M, Qin Y, et al. Green Chemistry, 2009, 11(5),646.
48 Francisco M, Van Den Bruinhorst A, Kroon M C. Angewandte Chemie International Edition, 2013, 52(11),3074.
49 Lu F, Ralph J. Journal of Agricultural and Food Chemistry, 1997, 45(12), 4655.
50 Shen X, Wen J, Mei Q, et al. Green Chemistry, 2019, 21(2),275.
51 Lu F, Ralph J. Journal of Agricultural and Food Chemistry, 1997, 45(7),2590.
52 Shuai L, Amiri M T, Questell-Santiago Y M, et al. Science, 2016,354(6310),329.
53 Vanholme R, Demedts B, Morreel K, et al. Plant Physiology, 2010, 153, 895.
54 Dashek W V. Methods in plant biochemistry and molecular biology. CRC Press,Florida, 1997.
55 Saariaho A M, Argyropoulos D S, et al. Vibrational Spectroscopy, 2005, 37(1),111.
56 Sun R, Lawther J M, Banks W B. Carbohydrate Polymers, 1996, 29(4), 325.
57 Ralph J, Marita J M, Ralph S A, et al. In: Argyropoulos, Advances in Lignocellulosics Characterization. Tappi Press, Atlanta, GA, 1999, pp.55.
58 Ralph J, Landucci L L. NMR of lignins. In Lignin and Lignans: Advances in Chemistry (Heitner, C., Dimmel, D.R. and Schmidt, J.A., eds). Boca Raton, FL: CRC Press, 2010, pp.137.
59 Zhang L, Gellerstedt G. Magnetic Resonance in Chemistry, 2007, 45(1),37.
[1] 何正文, 田红, 黄章俊, 胡章茂, 刘威. 基于量子化学理论的热解温度对木质素二聚体热解产物分布的影响[J]. 材料导报, 2020, 34(6): 6180-6185.
[2] 王晴, 康升荣, 吴丽梅, 张强, 丁兆洋. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.
[3] 汪源, 汪苏平, 张亚利, 纪宪坤. 混凝土增粘剂的制备及应用性能研究[J]. 材料导报, 2019, 33(Z2): 283-287.
[4] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[5] 计晓琴, 孙德林, 余先纯, 郝晓峰, 陈新义, 朱志红. Fe3+掺杂活化木质素基木材陶瓷的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3390-3395.
[6] 刘兰燕,宋俊,程博闻,薛文池,郑云波. 木质素基碳纤维制备的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 405-411.
[7] 刘晓, 赖光洪, 许谦, 管佳男, 王子明, 崔素萍, 兰明章. 基于抑制粘土负作用效果的聚羧酸减水剂的设计合成及机理[J]. 材料导报, 2018, 32(22): 3880-3884.
[8] 崔玉虎, 王奇, 苟光俊, 姜曼, 周祚万, 张胜利, 付金丽. 木质素催化降解液化的研究进展[J]. 《材料导报》期刊社, 2017, 31(5): 112-116.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed