Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20190-20194    https://doi.org/10.11896/cldb.20080166
  高分子与聚合物基复合材料 |
木质素环氧化接枝物及其制备大豆蛋白胶黏剂研究
陈欢, 汪宗涛, 陈仕清, 范东斌
中国林业科学研究院木材工业研究所,北京 100091
Synthesis of Epoxy Graft Copolymer of Lignin and Its Application in Preparing Soy Protein-based Adhesives
CHEN Huan, WANG Zongtao, CHEN Shiqing, FAN Dongbin
Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
下载:  全 文 ( PDF ) ( 4181KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过脱甲基化改性提高酶解木质素酚羟基含量,以增加其环氧化反应活性,并于碱性条件下与乙二醇二缩水甘油醚(EGDE)反应合成木质素环氧接枝物(EPDL);将其作为交联剂与大豆蛋白复合制备高性能绿色大豆蛋白胶黏剂。采用核磁共振磷谱(31P-NMR)以及红外光谱(FTIR)等分析手段对脱甲基木质素(DL)及其EPDL进行分析表征,研究了木质素脱甲基化前后羟基含量、接枝物环氧值及其化学结构的变化规律,考察了EPDL对大豆蛋白胶黏剂耐水胶合性能的影响。结果表明:脱甲基化改性明显提高了木质素羟基含量,其羟基含量较原木质素(L)提高了近29%,且通过微波加热处理可有效缩短木质素脱甲基化时间;脱甲基化改性使EPDL接枝上了较多环氧基团,其环氧值达到0.350 mol/100 g,增加了与大豆蛋白分子的交联反应活性;EPDL通过与大豆蛋白分子上羟基、氨基发生交联反应形成耐水化学结构,提高了大豆蛋白胶黏剂的耐热性和胶合性能,当EPDL用量为7%时,大豆蛋白胶黏剂湿胶合强度高达1.14 MPa,满足GB/T9846-2015国家标准规定的Ⅱ类胶合板要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈欢
汪宗涛
陈仕清
范东斌
关键词:  酶解木质素  大豆蛋白胶黏剂  脱甲基  环氧接枝物  胶合强度    
Abstract: In this work, enzymatic lignin was demethylated to improve its hydroxyl content, so as to increase the degree of epoxidation of lignin and ethy-lene glycol diglycidyl ether.The epoxy graft polymer of lignin (EPDL) with high epoxy value was synthesized by the reaction of lignin with ethy-lene glycol diglycidyl ether (EGDE) in alkaline condition, and which was used as a crosslinking agent to prepare high-performance green soy protein-based adhesive. Demethylated lignin (DL) and EPDL were characterized by 31P-NMR and FTIR. Hydroxyl content of lignin before and after demethylation, epoxy value and chemical structure of epoxy graft copolymer were discussed. The effect of soybean protein adhesives modified by EPDL on the wet bonding strength was investigated. The results showed that the content of hydroxyl group in lignin was increased by demethylation. Microwave heating significantly shortened the demethylation time of lignin and increased the hydroxyl content by 29% compared with the original lignin (L). More epoxy groups were grafted onto lignin and the epoxy value reached 0.350 mol/100 g by demethylation, which increased the cross-linking reaction activity between EPDL and SPI molecule. The water-resistant chemical structure could be formed by the crosslinking reaction of EPDL with hydroxyl group and amino group of soybean protein, which could improve the heat resistance and bonding strength of soy protein-based adhesive. When the amount of EPDL was 7%, the wet bonding strength of EPDL-SPI adhesive reached to the maximum value of 1.14 MPa, that far outstrips the requirements of class Ⅱ plywood specified in GB/T9846-2015 national standard.
Key words:  enzymatic hydrolysis lignin    soy-based adhesives    demethylation    epoxy graft polymer    bonding strength
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TQ432  
基金资助: 浙江省与中国林业科学研究院省院合作项目(2018SY02)
通讯作者:  fandongbin8@163.com   
作者简介:  陈欢,2019年6月毕业于西南林业大学,获得木材科学与工程学士学位。2019年9月至今在中国林业科学研究院木材工业研究所学习,主要从事木材化学和胶黏剂领域的研究。
范东斌,中国林业科学研究院木材工业研究所副研究员,硕士研究生导师,长期从事环保型木材胶粘剂与木材资源化方面的技术开发和应用研究。在国内外学术刊物发表论文40多篇,其中SCI论文20余篇,获得国家授权发明专利10项。
引用本文:    
陈欢, 汪宗涛, 陈仕清, 范东斌. 木质素环氧化接枝物及其制备大豆蛋白胶黏剂研究[J]. 材料导报, 2021, 35(20): 20190-20194.
CHEN Huan, WANG Zongtao, CHEN Shiqing, FAN Dongbin. Synthesis of Epoxy Graft Copolymer of Lignin and Its Application in Preparing Soy Protein-based Adhesives. Materials Reports, 2021, 35(20): 20190-20194.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080166  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20190
1 Gao Q, Liu Z, Li J Z, et al. Journal of Forestry Engineering,2020,5(2),1(in Chinese).
高强,刘峥,李建章,等.林业工程学报,2020,5(2),1.
2 Zuo Y F, Tu R R, Wu Y Q, et al. Materials Reports,2020,34(8),8172(in Chinese).
左迎峰,屠茹茹,吴义强,等.材料导报,2020,34(8),8172.
3 Zhang Y, Zhang M, Chen M S, et al. Chemical Engineering Journal,2018,354,1032.
4 Lei H, Du G, Wu Z, et al. International Journal of Adhesion and Adhesives,2014,50,199.
5 Chen N R, Zheng P T, Zeng Q Z, et al. Polymers,2017,9(10),514.
6 Duval A, Lawoko M. Reactive & Functional Polymers,2014,85,78.
7 Luo J, Luo J L, Yuan C, et al. RSC Advances,2015,5(122),100849.
8 Pradyawong S, Qi G Y, Li N B, et al. International Journal of Adhesion and Adhesives,2017,75,66.
9 Xiao Z G, Li Y H, Wu X R, et al. Industrial Crops and Products,2013,50,501.
10 Xin J N, Zhang P, Wolcott M P, et al. Journal of Polymers and the Environment,2017,25(3),599.
11 Yang S, Wen J L, Yuan T Q, et al. RSC Advances,2014,4(101),57996.
12 Granata A, Argyropoulos D S. Journal of Agricultural and Food Chemistry,1995,43(6),1538.
13 Podschun J, Saake B, Lehnen R. Reactive & Functional Polymers,2017,119,82.
14 Sasaki C, Wanaka M, Takagi H, et al. Industrial crops and products,2013,43,757.
15 Wen J L, Sun S L, Yuan T Q, et al. Journal of Agricultural and Food Chemistry,2013,61(46),11067.
16 Wen J L, Chen T Y, Sun R C. Journal of Forestry Engineering,2017,2(5),76(in Chinese).
文甲龙,陈天影,孙润仓.林业工程学报,2017,2(5),76.
17 Mei J, Liu W F, Huang J H, et al. Materials and Engineering,2019,304(4),8.
18 Gouveia J R, Garcia G E S, Antonino L D, et al. Molecules,2020,25(11),2513.
19 Elena U, Trofin A, Ariton A M, et al. Cellulose Chemistry and Technology,2016,50,77.
20 Liu C, Zhang Y, Li X, et al. RSC Advances,2017,7(34),21226.
21 Zhang Y, Zhang M, Chen M, et al. Chemical Engineering Journal,2018,354,1032.
No related articles found!
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed