Please wait a minute...
材料导报  2020, Vol. 34 Issue (20): 20159-20164    https://doi.org/10.11896/cldb.19090034
  高分子与聚合物基复合材料 |
木质素基磁性多孔复合纳米碳纤维的制备及微波吸收性能
王桂平, 喻伯鸣, 敖日格勒
华南理工大学制浆造纸工程国家重点实验室,广州 510640
Preparation and Microwave Absorption Properties of Lignin-based Magnetic Porous Carbon Nanofiber Composite
WANG Guiping, YU Boming, AORI Gele
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 5446KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以蔗渣乙酸木质素混合纺丝液为壳层,添加的聚乙烯吡咯烷酮作为形成多孔的软模板,乙酰丙酮铁作为磁性物前驱体,以苯乙烯丙烯腈共聚物溶液作为芯层,通过同轴静电纺丝及碳化过程制备得到木质素基磁性中空多孔复合纳米碳纤维(HPCNFs)。通过扫描电镜能谱仪对HPCNFs进行形貌观测与元素分析,通过X射线衍射仪、比表面积孔径分析仪和振动样品磁强计分别对HPCNFs进行物相定性分析、多孔特性和磁性能分析。最后通过矢量网络分析仪分析和对比了HPCNFs在1~18 GHz频率范围的电磁参数及微波吸收性能。结果发现,所有HPCNFs样品都具有铁磁性,乙酰丙酮铁添加量最高(25%)时,复合纳米碳纤维具有最高饱和磁化强度(3.16 emu/g);而乙酰丙酮铁添加量为10%时,表现出最好的吸波性能,最小反射损耗达-11.1dB,反射损耗低于-5 dB的频宽为3.05 GHz(5.78~8.83 GHz),低于-10 dB的频宽为0.72 GHz(6.63~7.35 GHz)。最后简单讨论了HPCNFs与微波的相互作用以及可能的微波吸收机理。制备的生物质基复合纳米碳纤维在微波吸收碳材料方面具有较大的发展潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王桂平
喻伯鸣
敖日格勒
关键词:  木质素  静电纺丝  中空多孔复合纳米碳纤维  微波吸收    
Abstract: Lignin-based magnetic hollow porous carbon nanofiber composite(HPCNFs),with the bagasse acetate lignin spinning solution as shell layer, added polyvinylpyrrolidone as forming porous soft template and iron acetylacetonate as the magnetic precursor, and the styrene acrylonitrile copolymer solution as core layer,were manufactured by coaxial electrospinning and carbonization technique. The morphology and element analysis were observed by scanning electron microscope-energy dispersive spectrometer, and the phase qualitative analysis,porous characteristics and magnetic properties were analyzed by X-ray diffractometer, specific surface and porosity analyzer and vibrating sample magnetometer, respectively. Finally, the electromagnetic parameters and microwave absorption performance of HPCNFs in the frequency range of 1—18 GHz were analyzed and compared by a vector network analyzer. The results showed that all HPCNFs samples were ferromagnetic, and the carbon nano-fiber composite with the highest addition of iron acetylacetonate at 25% had the highest saturation magnetization of 3.16 emu/g; while the addition of iron acetylacetone at 10% showed the best microwave absorption performance with the minimum reflection loss was -11.1 dB, and the bandwidth with reflection loss below -5 dB was 3.05 GHz (5.78—8.83 GHz), and the bandwidth below -10 dB was 0.72 GHz (6.63—7.35 GHz).Finally, the interaction and the possible microwave absorption mechanism between HPCNFs and microwave are briefly discussed. The prepared biomass-based carbon nanofiber composite has great development potential in microwave-absorbing carbon materials.
Key words:  lignin    electrospinning    hollow porous carbon nanofiber composite    microwave absorption
               出版日期:  2020-10-25      发布日期:  2020-11-06
ZTFLH:  TS721  
通讯作者:  gobro@scut.edu.cn   
作者简介:  王桂平,硕士研究生,2017年9月起至今在华南理工大学制浆造纸工程国家重点实验室培养学习。主要从事生物质基纳米功能材料的研究。
敖日格勒,华南理工大学副教授,1998年于日本北海道大学获得农学博士学位。主要从事植物生物质组分分离和生物质基纳米功能材料的研究。
引用本文:    
王桂平, 喻伯鸣, 敖日格勒. 木质素基磁性多孔复合纳米碳纤维的制备及微波吸收性能[J]. 材料导报, 2020, 34(20): 20159-20164.
WANG Guiping, YU Boming, AORI Gele. Preparation and Microwave Absorption Properties of Lignin-based Magnetic Porous Carbon Nanofiber Composite. Materials Reports, 2020, 34(20): 20159-20164.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090034  或          http://www.mater-rep.com/CN/Y2020/V34/I20/20159
1 Wang L, Huang Y, Li C, et al. Physical Chemistry Chemical Physics, 2015, 17(8), 5878.
2 Kong L, Yin X W, Yuan X Y, et al. Carbon, 2014, 73, 185.
3 Qin F, Brosseau C. Journal of Applied Physics, 2012, 111(6), 61301.
4 Wang F Y, Sun Y Q, Li D R, et al. Carbon, 2018, 134, 264.
5 Liu G Z, Jiang W, Sun D P, et al. Applied Surface Science, 2014, 314, 523.
6 Igor Maria De Rosa, Adrian Dinescu, Fabrizio Sarasini, et al. Composites Science and Technology, 2010, 70(1), 102.
7 Wu H H, Wang X Y, Zhang L, et al. Materials Review, 2007, 21(5), 115(in Chinese).
吴红焕,王晓艳,张玲,等.材料导报, 2007, 21(5), 115.
8 Xie W, Cheng H F, Chu Z Y, et al. Journal of Inorganic Materials, 2008(3), 481(in Chinese).
谢炜,程海峰,楚增勇,等.无机材料学报, 2008(3), 481.
9 Wang X,Jiang S N, Chen M Z, et al. Journal of Forestry Engineering, 2016, 1 (1), 83(in Chinese).
王翔,蒋帅南,陈敏智,等.林业工程学报, 2016, 1(1), 83.
10 Wen F S, Zhang F, Liu Z Y. The Journal of Physical Chemistry C, 2011, 115(29), 14025.
11 Zhang H, Hong M, Chen P, et al. Journal of Alloys and Compounds, 2016, 665, 381.
12 Yu K L, Zeng M, Yin Y C, et al. Advanced Engineering Materials, 2018, 20(2),1700543.
13 Zhang T, Huang D Q, Yang Y, et al. Materials Science and Enginee-ring: B, 2013, 178(1), 1.
14 Li G, Xie T S, Yang S L, et al. The Journal of Physical Chemistry C, 2012, 116(16), 9196.
15 Jeanne E Panels, Jinwoo Lee, Kang Yeol Park, et al. Nanotechnology, 2008, 19(45), 455612.
16 Yang Y, Guo Z, Zhang H, et al.Journal of Applied Polymer Science, 2013, 127(6), 4288.
17 Liu Z, Wan Y Z, Xiong G Y, et al. Materials Express, 2015, 5(2), 113.
18 Alexander Kraupner, Markus Antonietti, Regina Palkovits, et al. Journal of Materials Chemistry, 2010, 20(29), 6019.
19 Arūnas Baltunikas, Rimantas Levinskas. Materials Science, 2006, 3(12), 192.
20 Liu H H, Li Y J, Yuan M W, et al. Scientific Reports, DOI: 10.1038/s41598-018-27825-z.
21 Wu A B, Liu D M, Tong L Z, et al. CrystEngComm, 2011, 13(3), 876.
22 Giselher Herzer. Acta Materialia, 2013, 61(3), 718.
23 Shin-ichi Ohkoshi, Shiro Kuroki, Shunsuke Sakurai, et al. Angewandte Chemie International Edition, 2007, 46(44),8392.
24 Du Y C, Liu W W, Qiang R, et al. ACS Applied Materials & Interfaces, 2014, 6(15), 12997.
25 Yin Y C, Zeng M, Liu J, et al. Scientific Reports, 2016, 6(1),21139.
26 Wen F S, Zhang F, Liu Z Y. The Journal of Physical Chemistry C, 2011, 115(29), 14025.
27 Chen Y H, Huang Z H, Lu M M, et al. Journal of Materials Chemistry A, 2015, 3(24), 12621.
28 Wang G Z, Gao Z, Wan G P, et al. Nano Research, 2014, 7(5), 704.
29 Wang G Z, Gao Z, Tang S W, et al. ACS Nano, 2012, 6(12), 11009.
30 Zhan Y Q, Long Z H, Wan X Y, et al. Applied Surface Science, 2018, 444, 710.
31 Zhu C L, Zhang M L, Qiao Y J, et al. The Journal of Physical Chemistry C, 2010, 114(39), 16229.
[1] 余先纯, 孙德林, 计晓琴, 王张恒. 木质素基碳纳米片组装木陶瓷电极的结构调控与电化学储能[J]. 材料导报, 2021, 35(2): 2012-2018.
[2] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[3] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[4] 杨淑敏, 刘杏娥, 尚莉莉, 马建锋, 田根林, 江泽慧. 竹材木质素特性及表征方法研究进展[J]. 材料导报, 2020, 34(7): 7177-7182.
[5] 何正文, 田红, 黄章俊, 胡章茂, 刘威. 基于量子化学理论的热解温度对木质素二聚体热解产物分布的影响[J]. 材料导报, 2020, 34(6): 6180-6185.
[6] 陈雪微, 刘巍, 高洪达. 离子液体在不同溶剂中对PVB静电纺丝的影响[J]. 材料导报, 2020, 34(24): 24160-24164.
[7] 汪心坤, 赵芳, 王建江. 煅烧温度对Zn0.96Co0.04O纳米纤维吸波性能的影响[J]. 材料导报, 2020, 34(14): 14034-14038.
[8] 颜慧琼, 张薇, 王月, 何淞明, 赵芮, 廖月, 陈秀琼. 基于氧化-还原胺化反应改性海藻酸盐制备载药性电纺纳米复合纤维[J]. 材料导报, 2020, 34(12): 12139-12145.
[9] 王艳芝, 张玲杰, 张一风, 张旺玺. 电纺制备聚丙烯腈/氮化硼杂化复合纤维及其结构、性能研究[J]. 材料导报, 2020, 34(12): 12158-12162.
[10] 于翔, 桂久青, 张雪寅, 严亮, 卢晓龙. 尼龙66/纳米羟基磷灰石复合纤维膜的制备及骨缺损修复性能评价[J]. 材料导报, 2020, 34(12): 12185-12190.
[11] 汪心坤, 赵芳, 王建江. Zn1-xCexO纳米纤维的电纺制备及其红外雷达兼容隐身性能[J]. 材料导报, 2019, 33(Z2): 83-88.
[12] 张涛, 孙友谊, 刘亚青. 静电纺丝法制备壳聚糖/聚乙烯醇基复合碳纳米纤维及其电化学性能[J]. 材料导报, 2019, 33(Z2): 516-520.
[13] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[14] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[15] 胡银春, 程一竹, 王仁虎, 殷萌, 魏延, 杜晶晶, 黄棣, 陈维毅. 静电纺Ag@MOF-5/β-CD抗菌纤维膜的制备及性能[J]. 材料导报, 2019, 33(22): 3825-3828.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed