Please wait a minute...
材料导报  2020, Vol. 34 Issue (12): 12185-12190    https://doi.org/10.11896/cldb.19060030
  高分子与聚合物基复合材料 |
尼龙66/纳米羟基磷灰石复合纤维膜的制备及骨缺损修复性能评价
于翔1, 桂久青1, 张雪寅1, 严亮2, 卢晓龙1,3
1 河南工程学院材料与化学工程学院,郑州 450000
2 河南新辰环保科技有限公司,郑州 450000
3 河南理工大学材料科学与工程学院,焦作 454001
Preparation of Nylon 66/Nano-hydroxyapatite Composite Fiber Membrane and Evaluation of Bone Defect Repair Performance
YU Xiang1, GUI Jiuqing1, ZHANG Xueyin1, YAN Liang2, LU Xiaolong1,3
1 School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou 450000, China
2 Henan Xinchen Environmental Protection Technology Co., Ltd., Zhengzhou 450000, China
3 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454001, China
下载:  全 文 ( PDF ) ( 8597KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了拓宽PA66纤维膜在骨缺损修复领域的应用范围,采用静电纺丝法制备了不同羟基磷灰石(HAP)掺杂量的PA66(尼龙66)/HAP复合纤维膜,并系统研究了HAP浓度对复合纤维膜形貌、纤维直径、结晶性能和生物相容性的影响。结果表明,通过静电纺丝可以获得纤维尺寸均匀的PA66/HAP复合纤维膜,且复合纤维膜中纤维的直径随着HAP掺量的增加先减小后增大。DSC结果表明,HAP能够促进PA66纤维膜中β型晶体的生长,且随着HAP含量的增加,PA66/HAP复合纤维膜的结晶度降低,柔韧性有所增加。XRD结果表明,PA66/HAP复合纤维膜保留了PA66和HAP的特性,且HAP特征衍射峰的强度正比于HAP的添加量。细胞毒性结果表明,纤维膜无细胞毒性,且HAP对细胞的增殖有明显的促进作用;纤维膜植入动物体内后未引起炎症反应,具备良好的植入安全性。动物实验结果表明,PA66/HAP复合纤维膜能够有效防止纤维组织的长入和引导骨的生长。综上可知,PA66/HAP复合纤维膜在骨缺损修复领域具备良好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于翔
桂久青
张雪寅
严亮
卢晓龙
关键词:  尼龙66  纳米羟基磷灰石  复合纤维膜  静电纺丝  生物相容性    
Abstract: PA66/HAP composite fiber membranes with different HAP contents were prepared by electrospinning in order to prevent fibrous tissue and induce bone growth. The effects of HAP concentration on the morphology, fiber diameter, crystallinity and biocompatibility of bone guiding membranes were studied. The results showed that uniform PA66/HAP composite fiber membrane can be obtained by electrospinning, and the fiber diameter of PA66/HAP composite fiber membranes decreased first and then increased with the increase of HAP content. DSC results showed that the addition of HAP promoted the growth of β-type crystals in PA66 fiber membranes, and the crystallinity of PA66/HAP composite fiber membranes decreased with the increase of HAP content, which increased the flexibility of the fiber membranes. XRD results showed that PA66/HAP composite fiber membranes retained the characteristics of PA66 and HAP. Cytotoxicity results showed that the fibrous membrane had no cytotoxi-city, and HAP could promote cell proliferation significantly. Fiber membranes implanted in animals did not cause inflammation and had good implantation safety. Animal experiments showed that PA66/HAP composite fiber membrane can effectively block the growth of fibrous tissue and guide bone growth. In conclusion, PA66/HAP composite fiber membranes has good application prospects in the field of bone defect repair.
Key words:  nylon 66    nano-hydroxyapatite    composite fiber membrane    electrospinning    biocompatibility
                    发布日期:  2020-05-29
ZTFLH:  Q819  
通讯作者:  lxlpolymer@sina.com   
作者简介:  于翔,副教授,2010年9月至今任教于河南工程学院材料与化学工程学院,2010年6月获得郑州大学理学博士学位。主要从事功能高分子复合材料和3D打印材料领域的研究。
卢晓龙,2017年6月毕业于河南工程学院,获得工程学士学位。2017年9月以来在河南理工大学材料科学与工程学院攻读硕士研究生,主要从事功能高分子材料和光催化领域的研究。
引用本文:    
于翔, 桂久青, 张雪寅, 严亮, 卢晓龙. 尼龙66/纳米羟基磷灰石复合纤维膜的制备及骨缺损修复性能评价[J]. 材料导报, 2020, 34(12): 12185-12190.
YU Xiang, GUI Jiuqing, ZHANG Xueyin, YAN Liang, LU Xiaolong. Preparation of Nylon 66/Nano-hydroxyapatite Composite Fiber Membrane and Evaluation of Bone Defect Repair Performance. Materials Reports, 2020, 34(12): 12185-12190.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060030  或          http://www.mater-rep.com/CN/Y2020/V34/I12/12185
1 Wang W, Yeung K W K. Bioactive Materials,2017,2(4),224.
2 Stafford P R, Norris B L. Injury,2010,41,S72.
3 Nandi S K, Roy S, Mukherjee P, et al. Indian Journal of Medical Reseach,2010,132(1),15.
4 Rozbruch S R, Weitzman A M, Watson J T, et al. Journal of Orthopaedic Trauma,2006,20(3),194.
5 Rozbruch S R, Pugsley J S, Fragomen A T, et al. Journal of Orthopaedic Trauma,2008,22(2),88.
6 Kim K H, Jeong L, Park H N, et al. Journal of biotechnology,2005,120(3),327.
7 Hong K S, Kim E C, Bang S H, et al. Journal of Biomedical Materials Research Part A,2010,94(4),1187.
8 Ma S, Chen Z, Qiao F, et al. Journal of Dentistry,2014,42(12),1603.
9 Kellomäki M, Niiranen H, Puumanen K, et al. Biomaterials,2000,21(24),2495.
10 Davim J P, Silva L R, Festas A, et al. Materials & Design,2009,30(2),228.
11 Guan X, Zheng G, Dai K, et al. ACS Applied Materials & Interfaces,2016,8(22),14150.
12 Xu X, Li B, Lu H, et al. Applied Surface Science,2007,254(5),1456.
13 Szczes' A, Hośysz L, Chibowski E. Advances in Colloid and Interface Science,2017,249,321.
14 Agrawal K, Singh G, Puri D, et al. Journal of Minerals and Materials Characterization and Engineering,2011,10(8),727.
15 Bai H, Walsh F, Gludovatz B, et al. Advanced Materials,2016,28(1),50.
16 Cox S C, Thornby J A, Gibbons G J, et al. Materials Science and Engineering: C,2015,47,237.
17 Woodard J R, Hilldore A J, Lan S K, et al. Biomaterials,2007,28(1),45.
18 Xiong Y, Ren C, Zhang B, et al. International Journal of Nanomedicine,2014,9,485.
19 Zhang X, Li Y B, Zuo Y, et al. Composites Part A: Applied Science and Manufacturing,2007,38(3),843.
20 Zhang X, Li Y, Lv G, et al. Polymer Degradation and Stability,2006,91(5),1202.
21 Qu Y, Wang P, Man Y, et al. International Journal of Nanomedicine,2010,5,429.
22 Li J, Zuo Y, Cheng X, et al. Journal of Materials Science: Materials in Medicine,2008,20(5),1031.
23 Fong H, Chun L, Reneker D H. Polymer,1999,40(16),4585.
24 Wang Z M, Bai S H, Zhang X X, et al. Acta Materiae Compositae Sinica,2010,27(1),12(in Chinese).
王志苗,白世河,张兴祥,等.复合材料学报,2010,27(1),12.
25 Zhang X, Li Y B, Lv G Y, et al. Journal of Functional Materials,2005,36(6),896(in Chinese).
张翔,李玉宝,吕国玉,等.功能材料,2005,36(6),896.
26 Zuo Y, Li Y B, Wei J, et al. Journal of Functional Materials,2004,35(4),513(in Chinese).
左奕,李玉宝,魏杰,等.功能材料,2004,35(4),513.
27 Sun H N, Zuo G F, Han D Q, et al. China Ceramics,2017,53(12),63(in Chinese).
孙海娜,左桂福,韩大庆,等.中国陶瓷,2017,53(12),63.
[1] 朱俊名, 董梁, 秦溱, 李振楠, 袁青梅. 碳基及氧化锌量子点在癌症诊疗应用中的研究进展[J]. 材料导报, 2020, 34(9): 9075-9085.
[2] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[3] 颜慧琼, 张薇, 王月, 何淞明, 赵芮, 廖月, 陈秀琼. 基于氧化-还原胺化反应改性海藻酸盐制备载药性电纺纳米复合纤维[J]. 材料导报, 2020, 34(12): 12139-12145.
[4] 王艳芝, 张玲杰, 张一风, 张旺玺. 电纺制备聚丙烯腈/氮化硼杂化复合纤维及其结构、性能研究[J]. 材料导报, 2020, 34(12): 12158-12162.
[5] 杨丹,刘妍,钟正祥,田宫伟,樊文倩,王宇,齐殿鹏. 植入式神经微电极[J]. 材料导报, 2020, 34(1): 1107-1113.
[6] 汪心坤, 赵芳, 王建江. Zn1-xCexO纳米纤维的电纺制备及其红外雷达兼容隐身性能[J]. 材料导报, 2019, 33(Z2): 83-88.
[7] 曾德鹏, 余森, 王岚, 于振涛, 刘印, 盖晋阳, 代晓军. 医用金属材料表面自身纳米化研究进展[J]. 材料导报, 2019, 33(Z2): 343-347.
[8] 张涛, 孙友谊, 刘亚青. 静电纺丝法制备壳聚糖/聚乙烯醇基复合碳纳米纤维及其电化学性能[J]. 材料导报, 2019, 33(Z2): 516-520.
[9] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[10] 胡银春, 程一竹, 王仁虎, 殷萌, 魏延, 杜晶晶, 黄棣, 陈维毅. 静电纺Ag@MOF-5/β-CD抗菌纤维膜的制备及性能[J]. 材料导报, 2019, 33(22): 3825-3828.
[11] 康剑, 崔帅, 魏恒勇, 卜景龙, 崔燚, 李慧, 杨柳, 罗婧, 季文玲. 电纺制备ZrO2多孔纤维及其导热性能[J]. 材料导报, 2019, 33(20): 3396-3400.
[12] 黄艳萍, 但年华, 但卫华. 静电纺丝制备胶原基复合纳米医用纤维的研究进展[J]. 材料导报, 2019, 33(19): 3322-3327.
[13] 陈莹, 侯翼, 成来飞. 针对静电纺丝SiC纤维纳米化的溶液参数优化设计[J]. 材料导报, 2019, 33(10): 1619-1623.
[14] 陈曼, 何明, 郭妍婷, 尹国强. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 《材料导报》期刊社, 2018, 32(8): 1218-1223.
[15] 张雪荣, 胡银春, 席少晖, 王兆伟, 战岩, 黄棣, 胡超凡, 魏延. 静电纺β-环糊精/石墨烯载银抗菌纤维膜的制备与表征[J]. 《材料导报》期刊社, 2018, 32(4): 545-548.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed