Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8184-8187    https://doi.org/10.11896/cldb.19020038
  高分子与聚合物基复合材料 |
电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能
金胜男, 孙婷婷, 王明辉, 江莞
东华大学材料科学与工程学院,纤维材料改性国家重点实验室,上海 201620
Preparation of PEDOT/PEDOT∶PSS-based Flexible Nanofiber Film and Its Thermoelectric Properties by Electrochemical Deposition
JIN Shengnan, SUN Tingting, WANG Minghui, JIANG Wan
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
下载:  全 文 ( PDF ) ( 4047KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过静电纺丝技术制备柔性热电薄膜是一种非常可行的方法,制得的纳米纤维会随机交叉排列形成多孔结构。该结构不仅可以增强薄膜的变形能力、柔性和延展性,还可以增加纳米纤维膜中低热导率的非流动空气的含量,有利于降低纳米纤维膜的导热系数,然而目前对于静电纺丝在柔性热电领域应用的相关研究非常少。本工作通过静电纺丝技术制备了具有良好自支撑性和柔性的聚(3,4-乙烯二氧噻吩)∶聚对苯乙烯磺酸钠(PEDOT∶PSS)基纳米纤维膜,并结合电化学聚合法在该纳米纤维表面沉积了PEDOT导电层,得到了PEDOT/PEDOT∶PSS基热电纳米纤维膜。研究发现,聚合电位和单体浓度对热电纳米纤维膜的导电率有很大影响,最终在聚合电位为1.5 V、单体浓度为0.03 mol/L时,电导率和塞贝克系数分别为9.582 S·cm-1和26.7 μV·K-1,最优PF值可达0.68 μW·m-1·K-2
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金胜男
孙婷婷
王明辉
江莞
关键词:  PEDOT∶PSS  静电纺丝  电化学沉积  柔性热电材料    
Abstract: The preparation of flexible thermoelectric films by electrospinning is a very feasible method. The nanofibers are arranged randomly under electric field and form a porous structure, which not only increase the deformability, flexibility and ductility of nanofiber film, but also increase the content of non-flowing air with low thermal conductivity in nanofibers and this is conducive to reducing the thermal conductivity of the film. Howe-ver, there are few studies currently on the application of electrospinning in the field of flexible thermoelectric materials. In this paper, poly(3,4-ethylenedioxythiophene)∶poly(styrenesulfonate)-based (PEDOT∶PSS-based) nanofiber film with good self-supporting and flexibility was prepared by electrospinning. Then through electrochemical polymerization, PEDOT/PEDOT: PSS based thermoelectric nanofiber film was obtained. It was found that the polymer potential and monomer concentration had great influences on the conductivity of thermoelectric nanofiber film. At the polymerization potential of 1.5 V and monomer concentration of 0.03 mol/L, the conductivity and Seebeck coefficient were 9.582 S·cm-1 and 26.7 μV·K-1 respectively. The optimal PF value was 0.68 μW·m-1·K-2.
Key words:  PEDOT∶PSS    electrospinning    electrochemical deposition    flexible thermoelectric material
                    发布日期:  2020-04-25
ZTFLH:  TN304.82  
基金资助: 上海市科学技术委员会(18JC1411200)
通讯作者:  wmh@dhu.edu.cn   
作者简介:  金胜男,东华大学材料物理与化学专业在读硕士。
王明辉,东华大学实验师。
引用本文:    
金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
JIN Shengnan, SUN Tingting, WANG Minghui, JIANG Wan. Preparation of PEDOT/PEDOT∶PSS-based Flexible Nanofiber Film and Its Thermoelectric Properties by Electrochemical Deposition. Materials Reports, 2020, 34(8): 8184-8187.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020038  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8184
1 Yue R, Xu J. Synthetic Metals, 2012, 162(11-12), 912.
2 Bounioux C, Díaz-Chao P, Campoy-Quiles M, et al. Energy & Environmental Science, 2013, 6(3), 918.
3 Famili M, Grace I M, Al-Galiby Q, et al. Advanced Functional Mate-rials, 2017, 28(15),1703135.
4 Ge Z H, Chang Y, Li F, et al. Chemical Communications, 2018, 54, 2429.
5 He J, Kanatzidis M G, Dravid V P. Materials Today, 2013, 16(5), 166.
6 Yue R, Xu J. Synthetic Metals, 2012, 162(11-12), 912.
7 Jiang F, Wang L, Li C, et al. Journal of Polymer Research, 2017, 24(5), 68.
8 Guo C, Chu F, Chen P, et al. Journal of Materials Science, 2018, 53(9), 6752.
9 Song H, Cai K. Energy, 2017, 125, 519.
10 Coates N E, Yee S K, Mcculloch B, et al. Advanced Materials, 2013, 25(11), 1629.
11 Zhang T, Li K, Li C, et al. Advanced Electronic Materials, 2017, 3(4), 1600554.
12 Huang Z M, Zhang Y Z, Kotaki M, et al. Composites Science & Technology, 2003, 63(15), 2223.
13 Ding Y, Xu W, Wang W, et al. ACS Applied Materials & Interfaces, 2017, 9(35), 30014.
14 Yang W, Mao S, Yang J, et al. Scientific Reports, 2016, 6, 24187.
15 Jin Q, Shi W, Zhao Y, et al. ACS Applied Materials & Interfaces, 2018, 10(2), 1743.
16 Choi J, Lee J, Choi J, et al. Synthetic Metals, 2010, 160(13), 1415.
17 Liu N, Fang G, Wan J, et al. Journal of Materials Chemistry, 2011, 21(47), 18962.
18 Chronakis I S, Grapenson S, Jakob A. Polymer, 2006, 47(5), 1597.
19 Pinto N, Johnson Jr A, MacDiarmid A, et al. Applied Physics Letters, 2003, 83(20), 4244.
20 Li D, Babel A, Jenekhe S A, et al. Advanced Materials, 2004, 16(22), 2062.
21 Duan S, Wang Z, Zhang L, et al. ACS Applied Materials & Interfaces, 2017, 9(36), 30772.
22 Tao Y J, Zheng W W, Cheng H F, et al. Materials Review A:Review Papers, 2010, 24(7), 113(in Chinese).
陶益杰, 郑文伟, 程海峰, 等. 材料导报:综述篇, 2010, 24(7), 113.
23 Randriamahazaka H, Noël V, Chevrot C. Journal of Electroanalytical Chemistry, 1999, 476(2), 103.
24 Palma-Cando A U, Frontana-Uribe B A, Maldonado J L, et al. Procedia Chemistry, 2014,12, 92.
25 Huo Q C, Huang R L, Qi W, et al. Journal of Chemical Industry and Engineering, 2016, 67(10), 4406(in Chinese).
霍庆城, 黄仁亮, 齐崴, 等. 化工学报, 2016, 67(10), 4406.
26 Li X, Xu Y T, Zheng Y P, et al. Acta Polymerica Sinica, 2017, 4(4),661(in Chinese).
李昕, 许英涛, 郑一平, 等. 高分子学报, 2017, 4(4), 661.
[1] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[2] 汪心坤, 赵芳, 王建江. 煅烧温度对Zn0.96Co0.04O纳米纤维吸波性能的影响[J]. 材料导报, 2020, 34(14): 14034-14038.
[3] 颜慧琼, 张薇, 王月, 何淞明, 赵芮, 廖月, 陈秀琼. 基于氧化-还原胺化反应改性海藻酸盐制备载药性电纺纳米复合纤维[J]. 材料导报, 2020, 34(12): 12139-12145.
[4] 王艳芝, 张玲杰, 张一风, 张旺玺. 电纺制备聚丙烯腈/氮化硼杂化复合纤维及其结构、性能研究[J]. 材料导报, 2020, 34(12): 12158-12162.
[5] 于翔, 桂久青, 张雪寅, 严亮, 卢晓龙. 尼龙66/纳米羟基磷灰石复合纤维膜的制备及骨缺损修复性能评价[J]. 材料导报, 2020, 34(12): 12185-12190.
[6] 汪心坤, 赵芳, 王建江. Zn1-xCexO纳米纤维的电纺制备及其红外雷达兼容隐身性能[J]. 材料导报, 2019, 33(Z2): 83-88.
[7] 张涛, 孙友谊, 刘亚青. 静电纺丝法制备壳聚糖/聚乙烯醇基复合碳纳米纤维及其电化学性能[J]. 材料导报, 2019, 33(Z2): 516-520.
[8] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[9] 胡银春, 程一竹, 王仁虎, 殷萌, 魏延, 杜晶晶, 黄棣, 陈维毅. 静电纺Ag@MOF-5/β-CD抗菌纤维膜的制备及性能[J]. 材料导报, 2019, 33(22): 3825-3828.
[10] 康剑, 崔帅, 魏恒勇, 卜景龙, 崔燚, 李慧, 杨柳, 罗婧, 季文玲. 电纺制备ZrO2多孔纤维及其导热性能[J]. 材料导报, 2019, 33(20): 3396-3400.
[11] 黄艳萍, 但年华, 但卫华. 静电纺丝制备胶原基复合纳米医用纤维的研究进展[J]. 材料导报, 2019, 33(19): 3322-3327.
[12] 王剑豪, 薛松柏, 吕兆萍, 王刘珏, 刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[13] 陈莹, 侯翼, 成来飞. 针对静电纺丝SiC纤维纳米化的溶液参数优化设计[J]. 材料导报, 2019, 33(10): 1619-1623.
[14] 徐翔宇, 李弘坤, 詹达, 刘向阳. PEDOT∶PSS掺杂丝素蛋白复合薄膜的半导体性能[J]. 材料导报, 2019, 33(10): 1734-1737.
[15] 陈曼, 何明, 郭妍婷, 尹国强. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 《材料导报》期刊社, 2018, 32(8): 1218-1223.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed