Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8188-8193    https://doi.org/10.11896/cldb.19040015
  高分子与聚合物基复合材料 |
利用优化的水渗透试验研究SAPs的裂缝愈合机理
杨海涛1,2,3, 刘娟红1,2,3, 纪洪广1,2,3, 周昱程1,2,3
1 北京科技大学土木与资源工程学院,北京 100083;
2 北京科技大学城市地下空间工程北京市重点实验室,北京 100083;
3 北京科技大学金属矿山高效开采与安全教育部重点实验室,北京 100083
Study of the Healing Mechanism of SAPs by an Optimized Water Permeability Test
YANG Haitao1,2,3, LIU Juanhong1,2,3, JI Hongguang1,2,3, ZHOU Yucheng1,2,3
1 College of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2 Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083, China;
3 State Key Laboratory of High-efficient Mining and Safety of Metal Mines of Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 6806KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土开裂不利于结构的耐久性,自愈合混凝土是提高混凝土结构裂缝自修复能力的理想材料。本实验借助水渗透装置首次研究了非等宽裂缝中的水流分布和水流速;分析了非等宽裂缝对水渗透试验准确性的影响;利用优化的水渗透试验探究了高吸水性树脂(SAPs)的粒径、裂缝宽度与SAPs愈合效率(Ψ′)的关系;基于裂缝中SAPs的形貌分析了SAPs的裂缝愈合机理。结果表明:当水头高度(I)较小时,非等宽模拟裂缝内水流处于不饱和状态,这造成SAPs的Ψ′值被低估;增大I值可提高非等宽裂缝中水流的饱和程度,进而增加所测试Ψ′值的准确性。拌合过程中SAPs的吸水能力(α)和裂缝宽度是影响Ψ′值的关键因素。L型和M型SAPs的α值较大,其膨胀后可部分或完全填充初始孔洞处的裂缝;而S型SAPs的α值和初始粒径较小,其膨胀后难以有效堵塞裂缝。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨海涛
刘娟红
纪洪广
周昱程
关键词:  裂缝  自愈合混凝土  高吸水性树脂  水渗透试验    
Abstract: The concrete is susceptible to cracking due to its high brittleness. This leads to the serious leakage of water which is harmful to the safety of life and property. Self-healing concrete containing superabsorbent polymers (SAPs) is an ideal material with crack self-repairing ability and can improve the durability of concrete structure. The SAPs are cross-linked hydrogel network and will absorb solution up to several hundred times of their own weight. As a new admixture, SAPs can improve the self-healing capacity, freeze-thaw resistance and mitigate the autogenous shrin-kage of concrete. In this paper, the distribution and flow rate of water in a crack with non-equal width were studied for the first time. Moreover, the effects of particle size of SAPs and crack width on the healing efficiency (Ψ′) of SAPs were also investigated by an optimized water permeabi-lity test. The self-healing mechanism of SAPs was analyzed based on the morphology of SAPs in a crack. The results show that the water in a crack with non-equal width is unsaturated when the water head (I) is small, resulting in the underestimation of the Ψ′ value. The increase of I va-lue can help to raise the saturation degree of water in the crack with non-equal width and improve the accuracy of the Ψ′ value. In addition, the absorption capacity (α) of SAPs during the mixing procedure and the crack width have significant impacts on the Ψ′ value. The SAPs with M and L particle sizes have a large α value and can seal or partly seal the crack which is within the original void. While SAPs with S particle size have a small α value and can hardly seal the crack effectively.
Key words:  crack    self-healing concrete    superabsorbent polymers    water permeability test
                    发布日期:  2020-04-25
ZTFLH:  TU528  
基金资助: 国家重点研发计划项目(2016YFC0600803)
通讯作者:  juanhong1966@hotmail.com   
作者简介:  杨海涛,2013年6月毕业于武汉理工大学,获得硕士学位。于2016年9月至今,在北京科技大学攻读博士学位,主要从事高性能混凝土自愈合研究。
刘娟红,北京科技大学,教授。主要研究生态环保型高性能土木工程结构材料、新型混凝土材料及其环境行为与建筑物寿命分析和矿山充填用新型胶凝材料研究与应用。
引用本文:    
杨海涛, 刘娟红, 纪洪广, 周昱程. 利用优化的水渗透试验研究SAPs的裂缝愈合机理[J]. 材料导报, 2020, 34(8): 8188-8193.
YANG Haitao, LIU Juanhong, JI Hongguang, ZHOU Yucheng. Study of the Healing Mechanism of SAPs by an Optimized Water Permeability Test. Materials Reports, 2020, 34(8): 8188-8193.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040015  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8188
1 Mignon A, Snoeck D, Dubruel P, et al. Materials, 2017, 10(3),237.
2 Yang Y, Lepech M D, Yang E, et al. Cement and Concrete Research, 2009, 39(5),382.
3 Ferrara L, Van Mullem T, Alonso M C, et al. Construction and Building Materials, 2018,167,115.
4 Lee H X D, Wong H S, Buenfeld N R. Cement and Concrete Research, 2016,79,194.
5 Wang K, Jansen D C, Shah S P, et al. Cement and Concrete Research, 1997, 27(3),381.
6 Aldea C M, Shah S P, Karr A. Materials and Structures, 1999, 32,370.
7 Edvardsen C. ACI Materials Journal, 1999, 96,448.
8 Hong G, Choi S. Construction and Building Materials, 2017, 143,366.
9 Pelto J, Leivo M, Gruyaert E, et al. Smart Materials and Structures, 2017, 26(10),105043.
10 Palin D, Jonkers H M, Wiktor V. Cement and Concrete Research, 2016, 84,1.
11 Deng H, Liao G. Construction and Building Materials, 2018, 170,455.
12 Hong G, Choi S. Construction and Building Materials, 2018, 164,570.
13 Park B, Choi Y C. Construction and Building Materials, 2018, 189,1054.
14 Roig Flores M, Moscato S, Serna P, et al. Construction and Building Materials, 2015, 86,1.
15 Yi S, Hyun T, Kim J. Construction and Building Materials, 2011, 25(5),2576.
16 Li X, Li D, Xu Y. Composite Structures, 2019, 210,262.
17 Schroefl C, Mechtcherine V, Vontobel P, et al. Cement and Concrete Research, 2015, 75,1.
18 Esteves L P. Cement and Concrete Composites, 2011, 33(7),717.
19 Elliott M. In Superabsorbent Polymer. BASF Aktiengesell-shaft: Ludwigshafen Germany, 2004.
20 Ma X, Yuan Q, Liu J, et al. Construction and Building Materials, 2019, 195,66.
[1] 冯光岩, 金祖权, 熊传胜, 范君峰. 海洋潮汐区暴露700 d带裂缝混凝土中耐蚀钢筋的锈蚀行为[J]. 材料导报, 2020, 34(8): 8064-8070.
[2] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[3] 钱春香, 冯建航, 苏依林. 微生物诱导碳酸钙提高水泥基材料的早期力学性能及自修复效果[J]. 材料导报, 2019, 33(12): 1983-1988.
[4] 张鹏, 冯竟竟, 陈伟, 刘虎, 杨进波. 混凝土损伤自修复技术的研究与进展[J]. 材料导报, 2018, 32(19): 3375-3386.
[5] 陈悦,朱锡,朱子旭,李华东. 含预裂缝复合材料缠绕圆柱壳轴压承载特性分析*[J]. 《材料导报》期刊社, 2017, 31(7): 150-154.
[6] 刘红彪, 张强, 郭畅, 张鹏. 超高韧性水泥基复合材料多缝开裂特性及其自生愈合*[J]. CLDB, 2017, 31(23): 145-149.
[7] 徐晶, 王彬彬. 陶粒负载微生物的混凝土开裂自修复研究*[J]. 《材料导报》期刊社, 2017, 31(14): 127-131.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed