Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 150-154    https://doi.org/10.11896/j.issn.1005-023X.2017.07.023
  先进结构复合材料 |
含预裂缝复合材料缠绕圆柱壳轴压承载特性分析*
陈悦,朱锡,朱子旭,李华东
海军工程大学舰船工程系,武汉 430033
Investigation on Ultimate Bearing Capability of Cracked Filament Wounded Composite Cylindrical Shells Subjected to Axial Compression
CHEN Yue, ZHU Xi, ZHU Zixu, LI Huadong
Department of Naval Architecture Engineering,Naval University of Engineering,Wuhan 430033
下载:  全 文 ( PDF ) ( 1804KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究穿透裂缝对复合材料缠绕圆柱壳承载能力及失效模式的影响,首先开展不同壁厚含预裂缝复合材料缠绕圆柱壳轴向压缩试验。对于A系列厚壁圆柱壳,裂缝导致承载能力下降53.96%,失效模式由局部屈曲转化为裂缝扩展、脆性断裂;而B系列薄壁圆柱壳均发生局部屈曲,裂缝使承载能力下降12.59%。其次,采用有限元软件ABAQUS 6.14,基于非线性RIKS算法,建立轴压作用下含预裂缝复合材料圆柱壳极限承载能力计算模型,通过引入Hashin失效准则及损伤演化判据,预测结构渐进破坏模式及极限荷载。数值结果与试验数据吻合良好,最大误差为7.01%,验证了数值算法的可靠性。在此基础上,探讨裂缝方向、缠绕角度对含预裂缝复合材料圆柱壳极限承载的影响,可知:对于±55°螺旋铺层复合材料圆柱壳,随裂缝角度α增加,极限承载能力先升高再降低,当α=45°时,具备最大承载能力;对于含开缝角α=15°、45°、55°缠绕圆柱壳,随缠绕角θ增加,其承载能力呈先上升后下降趋势。且开缝角越小,缠绕角度对极限荷载的影响越大,当缠绕角θ=30°时,达到最大承载能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈悦
朱锡
朱子旭
李华东
关键词:  复合材料  缠绕圆柱壳  裂缝  失效模式  极限荷载    
Abstract: In this study, the ultimate load capability and failure modes of filament-wounded composite cylindrical shells with through crack has been investigated. First, axial compression test was carried out for two series filament-wounded cracked cylindrical shells. For A series thick wall cylindrical shell, crack led a 53.96% drop in load capability, and the failure mode transferred from local buckling to crack propagation and brittle fracture. For B series thin wall cylindrical shell, the failure modes were local buckling and the load capability decreased by 12.59%. Then, numerical analysis of cracked composite cylindrical shells under axial compression was developed by ABAQUS 6.14 using nonlinear algorithm RIKS. The Hashin failure criteria and damage evolution guidelines were introduced in the model to predict the progressive failure modes and the ultimate load. A good agreement was observed between numerical simulation and experimental results, and the maximum error was 7.01%. Furthermore, the effects of crack orientation and wind angle on the load capability of an axially loaded cracked cylindrical shell were studied. For cracked filament-wounded composite cylindrical shell with ±55° layer, the ultimate bearing capability increased first then decreased with the increasing crack orientation. The maximum limit load was got when α=45°.With the increase of wind angle ,the carrying capability showed a downward trend after the first rise for cylindrical shells with α=15°,45°,55° crack. And the wind angle had a more obvious influence on carrying capability with smaller crack orientation. The maximum limit load was got when θ=30°.
Key words:  composite material    filament-wounded cylindrical shell    crack    failure mode    ultimate load
               出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  TB332.1  
基金资助: *国家部委基金资助项目(9140A14080914JB11044)
作者简介:  陈悦:女,1989年生,博士研究生,研究方向为船用复合材料及其应用E-mail:chenyue322@126.com
引用本文:    
陈悦,朱锡,朱子旭,李华东. 含预裂缝复合材料缠绕圆柱壳轴压承载特性分析*[J]. 《材料导报》期刊社, 2017, 31(7): 150-154.
CHEN Yue, ZHU Xi, ZHU Zixu, LI Huadong. Investigation on Ultimate Bearing Capability of Cracked Filament Wounded Composite Cylindrical Shells Subjected to Axial Compression. Materials Reports, 2017, 31(7): 150-154.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.023  或          http://www.mater-rep.com/CN/Y2017/V31/I7/150
1 El Naschie M S. Branching solution for local buckling of a circumfe-rentially cracked cylindrical shell[J]. Int J Mechan Sci,1974,16:689.
2 Estekanchi H E, Vafai A. On the buckling of cylindrical shells with through cracks under axial load[J]. Thin Wall Struct,1999,35(4):255.
3 Estekanchi H E, Vafai A, Kheradmandnia K. Finite element buckling analysis of cracked cylindrical shells under torsion[J]. Asian J Civ Eng,2002,3(2):73.
4 Jr J H S, Cheryl A R. Nonlinear response of thin cylindrical shells with longitudinal cracks and subjected to internal pressure and axial compression loads[C]∥38th Structures, Structural Dynamics, and Materials Conference(AIAA).Kissimmee, VSA,1997:2213.
5 Jr J H S, Cheryl A R. Buckling and stable tearing responses of unstiffened aluminium shells with long cracks[M]. Williamsbarg: NASA Langley Technical Report Server,1998.
6 Vaziri A, Estekanchi H E. Buckling of cracked cylindrical thin shells under combined internal pressure and axial compression[J].Thin-Walled Structures,2006,44:141.
7 Vaziri A. On the buckling of cracked composite cylindrical shells under axial compression[J]. Composite Structures,2007,80(1):152.
8 Babak H J, Ashkan V. Instability of cylindrical shells with single and multiple cracks under axial compression[J]. Thin-Walled Structures,2012,54:35.
9 Rahman S, Hamed S G, Mohammad F. Buckling of cracked cylindrical panels under axially compressive and tensile loads[J]. Thin-Walled Structures,2015,94:45.
10 Shariati M, Sedighi M, Saemi J, et al. Numerical and experimental investigation on ultimate strength of cracked cylindrical shells subjected to combined loading[J]. Mechanika,2010,84(4):12.
11 Yang Manman, Cheng Xiaoquan, Hu Renwei. Analysis and experiments of composite cracked cylindrical shell under axial compression[J].Hi-Tech Fiber Application,2015,40(2):53.
杨曼曼,程小全,胡仁伟.复合材料开缝柱壳压缩屈曲分析与试验[J].高科技纤维与应用,2015,40(2):53.
12 Wu Pengfei, Cheng Xiaoquan, Zhang Tao, et al. Effect of penetrated crack on compressive buckling performance of composite cylindrical shells with an open hole[J]. Polym Mater Sci Eng,2013,29(10):179.
武鹏飞, 程小全, 张涛, 等. 穿透裂缝对开口复合材料柱壳屈曲性能的影响[J]. 高分子材料科学与工程, 2013,29(10):179.
13 Chen Ruxun. Structure analysis for filament wound cylinder pressure[J]. J Solid Rocket Technol,2004,27(2):105.
陈汝训.纤维缠绕圆筒压力容器结构分析[J].固体火箭技术,2004,27(2):105.
14 Javidruzi M, Vafai A, Chen J F, et al. Vibration, buckling and dynamic stability of cracked cylindrical shells[J]. Thin-Walled Structures,2004,42:79.
15 Hashin Z. Failure criteria for unidirectional fiber composites[J].J Appl Mechan,1980,47(2):329.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[7] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[10] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[13] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed