Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 150-154    https://doi.org/10.11896/j.issn.1005-023X.2017.07.023
  先进结构复合材料 |
含预裂缝复合材料缠绕圆柱壳轴压承载特性分析*
陈悦,朱锡,朱子旭,李华东
海军工程大学舰船工程系,武汉 430033
Investigation on Ultimate Bearing Capability of Cracked Filament Wounded Composite Cylindrical Shells Subjected to Axial Compression
CHEN Yue, ZHU Xi, ZHU Zixu, LI Huadong
Department of Naval Architecture Engineering,Naval University of Engineering,Wuhan 430033
下载:  全 文 ( PDF ) ( 1804KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究穿透裂缝对复合材料缠绕圆柱壳承载能力及失效模式的影响,首先开展不同壁厚含预裂缝复合材料缠绕圆柱壳轴向压缩试验。对于A系列厚壁圆柱壳,裂缝导致承载能力下降53.96%,失效模式由局部屈曲转化为裂缝扩展、脆性断裂;而B系列薄壁圆柱壳均发生局部屈曲,裂缝使承载能力下降12.59%。其次,采用有限元软件ABAQUS 6.14,基于非线性RIKS算法,建立轴压作用下含预裂缝复合材料圆柱壳极限承载能力计算模型,通过引入Hashin失效准则及损伤演化判据,预测结构渐进破坏模式及极限荷载。数值结果与试验数据吻合良好,最大误差为7.01%,验证了数值算法的可靠性。在此基础上,探讨裂缝方向、缠绕角度对含预裂缝复合材料圆柱壳极限承载的影响,可知:对于±55°螺旋铺层复合材料圆柱壳,随裂缝角度α增加,极限承载能力先升高再降低,当α=45°时,具备最大承载能力;对于含开缝角α=15°、45°、55°缠绕圆柱壳,随缠绕角θ增加,其承载能力呈先上升后下降趋势。且开缝角越小,缠绕角度对极限荷载的影响越大,当缠绕角θ=30°时,达到最大承载能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈悦
朱锡
朱子旭
李华东
关键词:  复合材料  缠绕圆柱壳  裂缝  失效模式  极限荷载    
Abstract: In this study, the ultimate load capability and failure modes of filament-wounded composite cylindrical shells with through crack has been investigated. First, axial compression test was carried out for two series filament-wounded cracked cylindrical shells. For A series thick wall cylindrical shell, crack led a 53.96% drop in load capability, and the failure mode transferred from local buckling to crack propagation and brittle fracture. For B series thin wall cylindrical shell, the failure modes were local buckling and the load capability decreased by 12.59%. Then, numerical analysis of cracked composite cylindrical shells under axial compression was developed by ABAQUS 6.14 using nonlinear algorithm RIKS. The Hashin failure criteria and damage evolution guidelines were introduced in the model to predict the progressive failure modes and the ultimate load. A good agreement was observed between numerical simulation and experimental results, and the maximum error was 7.01%. Furthermore, the effects of crack orientation and wind angle on the load capability of an axially loaded cracked cylindrical shell were studied. For cracked filament-wounded composite cylindrical shell with ±55° layer, the ultimate bearing capability increased first then decreased with the increasing crack orientation. The maximum limit load was got when α=45°.With the increase of wind angle ,the carrying capability showed a downward trend after the first rise for cylindrical shells with α=15°,45°,55° crack. And the wind angle had a more obvious influence on carrying capability with smaller crack orientation. The maximum limit load was got when θ=30°.
Key words:  composite material    filament-wounded cylindrical shell    crack    failure mode    ultimate load
出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  TB332.1  
基金资助: *国家部委基金资助项目(9140A14080914JB11044)
作者简介:  陈悦:女,1989年生,博士研究生,研究方向为船用复合材料及其应用E-mail:chenyue322@126.com
引用本文:    
陈悦,朱锡,朱子旭,李华东. 含预裂缝复合材料缠绕圆柱壳轴压承载特性分析*[J]. 《材料导报》期刊社, 2017, 31(7): 150-154.
CHEN Yue, ZHU Xi, ZHU Zixu, LI Huadong. Investigation on Ultimate Bearing Capability of Cracked Filament Wounded Composite Cylindrical Shells Subjected to Axial Compression. Materials Reports, 2017, 31(7): 150-154.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.023  或          https://www.mater-rep.com/CN/Y2017/V31/I7/150
1 El Naschie M S. Branching solution for local buckling of a circumfe-rentially cracked cylindrical shell[J]. Int J Mechan Sci,1974,16:689.
2 Estekanchi H E, Vafai A. On the buckling of cylindrical shells with through cracks under axial load[J]. Thin Wall Struct,1999,35(4):255.
3 Estekanchi H E, Vafai A, Kheradmandnia K. Finite element buckling analysis of cracked cylindrical shells under torsion[J]. Asian J Civ Eng,2002,3(2):73.
4 Jr J H S, Cheryl A R. Nonlinear response of thin cylindrical shells with longitudinal cracks and subjected to internal pressure and axial compression loads[C]∥38th Structures, Structural Dynamics, and Materials Conference(AIAA).Kissimmee, VSA,1997:2213.
5 Jr J H S, Cheryl A R. Buckling and stable tearing responses of unstiffened aluminium shells with long cracks[M]. Williamsbarg: NASA Langley Technical Report Server,1998.
6 Vaziri A, Estekanchi H E. Buckling of cracked cylindrical thin shells under combined internal pressure and axial compression[J].Thin-Walled Structures,2006,44:141.
7 Vaziri A. On the buckling of cracked composite cylindrical shells under axial compression[J]. Composite Structures,2007,80(1):152.
8 Babak H J, Ashkan V. Instability of cylindrical shells with single and multiple cracks under axial compression[J]. Thin-Walled Structures,2012,54:35.
9 Rahman S, Hamed S G, Mohammad F. Buckling of cracked cylindrical panels under axially compressive and tensile loads[J]. Thin-Walled Structures,2015,94:45.
10 Shariati M, Sedighi M, Saemi J, et al. Numerical and experimental investigation on ultimate strength of cracked cylindrical shells subjected to combined loading[J]. Mechanika,2010,84(4):12.
11 Yang Manman, Cheng Xiaoquan, Hu Renwei. Analysis and experiments of composite cracked cylindrical shell under axial compression[J].Hi-Tech Fiber Application,2015,40(2):53.
杨曼曼,程小全,胡仁伟.复合材料开缝柱壳压缩屈曲分析与试验[J].高科技纤维与应用,2015,40(2):53.
12 Wu Pengfei, Cheng Xiaoquan, Zhang Tao, et al. Effect of penetrated crack on compressive buckling performance of composite cylindrical shells with an open hole[J]. Polym Mater Sci Eng,2013,29(10):179.
武鹏飞, 程小全, 张涛, 等. 穿透裂缝对开口复合材料柱壳屈曲性能的影响[J]. 高分子材料科学与工程, 2013,29(10):179.
13 Chen Ruxun. Structure analysis for filament wound cylinder pressure[J]. J Solid Rocket Technol,2004,27(2):105.
陈汝训.纤维缠绕圆筒压力容器结构分析[J].固体火箭技术,2004,27(2):105.
14 Javidruzi M, Vafai A, Chen J F, et al. Vibration, buckling and dynamic stability of cracked cylindrical shells[J]. Thin-Walled Structures,2004,42:79.
15 Hashin Z. Failure criteria for unidirectional fiber composites[J].J Appl Mechan,1980,47(2):329.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[3] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[4] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[5] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[6] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[7] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[12] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[13] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[14] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[15] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed