Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 127-131    https://doi.org/10.11896/j.issn.1005-023X.2017.014.027
  材料研究 |
陶粒负载微生物的混凝土开裂自修复研究*
徐晶, 王彬彬
同济大学先进土木工程材料教育部重点实验室, 上海 201804;
Research on Self-healing of Concrete Cracks by Ceramsite Immobilized Microorganism
XU Jing, WANG Binbin
Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education,Tongji University, Shanghai 201804;
下载:  全 文 ( PDF ) ( 1401KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用多孔陶粒作为微生物载体,在评价修复剂与混凝土基体的相容性以及优选陶粒掺量的基础上,分别从力学性能和耐久性角度对混凝土开裂的微生物自修复进行了研究。结果表明:自修复剂中的牛肉膏和蛋白胨对混凝土有负面影响,而尿素和硝酸钙的影响不大。陶粒体积分数为37.8%时可作为最佳掺量。将微生物芽孢及有机营养组分负载于陶粒中并掺入混凝土,经开裂破坏的试件在28 d养护自修复后,其抗压强度恢复率接近63%,吸水率显著低于基准组,可观察到裂缝被微生物矿化形成的方解石型碳酸钙沉淀填充,裂缝最大修复宽度约为0.51 mm。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐晶
王彬彬
关键词:  微生物  混凝土  裂缝  自修复  陶粒    
Abstract: Porous ceramsite was used as microbial carrier. Based on the evaluation of compatibility between healing agents and concrete, and an optimal selection of ceramsite content, the self-healing of concrete cracks by bacteria was studied in view of mechanical performance and durability. Results indicate that beef extract and peptone in self-healing agents have a negative effect on concrete, while the effect of urea and calcium nitrate is insignificant. The optimum volume ratio of ceramsite is determined as 37.8%. The ceramsite immobilized with bacteria and organic nutrients is added to concrete. After 28 days curing for self-healing, the recovery ratio of compressive strength of the cracked concrete reaches about 63%, and its water absorption is significantly lower than that of the controlled sample. It can be observed that cracks are filled with calcite type calcium carbonate produced by microbial mineralization, and the maximum crack width can be healed is about 0.51 mm.
Key words:  microorganism    concrete    crack    self-healing    ceramsite
               出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TU502  
基金资助: *国家自然科学基金(51378011)
作者简介:  徐晶:男,1984年生,博士,副研究员,主要研究方向为碳纤维水泥基智能材料、钢筋混凝土腐蚀与防护及微生物自主修复材料 E-mail:nanonewman@126.com
引用本文:    
徐晶, 王彬彬. 陶粒负载微生物的混凝土开裂自修复研究*[J]. 《材料导报》期刊社, 2017, 31(14): 127-131.
XU Jing, WANG Binbin. Research on Self-healing of Concrete Cracks by Ceramsite Immobilized Microorganism. Materials Reports, 2017, 31(14): 127-131.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.027  或          http://www.mater-rep.com/CN/Y2017/V31/I14/127
1 Jonkers H M,Thijssen A,Muyzer G,et al.Application of bacteria as self-healing agent for the development of sustainable concrete[J].Ecological Eng,2010,36(2):230.
2 Wiktor V,Jonkers H M. Quantification of crack-healing in novel bacteria-based self-healing concrete [J].Cem Concr Compos,2011,33(7):763.
3 Wang J,de Belie N,Verstraete W.Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete[J].J Ind Microbiol Biotechnol,2012,39(4):567.
4 Wang J,Tittelboom K V,de Belie N,et al.Use of silica gel or polyurethane immobilized bacteria for self-healing concrete [J].Constr Building Mater,2012,26(1):532.
5 Wang J,Soens H,Verstraete W,et al.Self-healing concrete by use of microencapsulated bacteria spores [J].Cem Concr Res,2014,56:139.
6 Wang J Y,Snoeck D,van Vlierberghe S,et al.Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete[J].Constr Building Mater,2014,68:110.
7 ErŞan Y Ç,Da Silva F B,Boon N,et al.Screening of bacteria and concrete compatible protection materials[J].Constr Building Mater,2015,88:196.
8 Wang Jianyun,Qian Chunxiang,Wang Ruixing,et al.Surface protection of cement based materials by a CaCO3 layer produced by alginate-immobilized bacteria[J].J Funct Mater,2009,40(2):348(in Chinese).
王剑云,钱春香,王瑞兴,等.海藻酸钠固载菌株在水泥及材料表面防护中的应用研究[J]. 功能材料,2009,40(2):348.
9 Qian Chunxiang,Li Ruiyang,Pan Qingfeng,et al. Microbial self-healing effects of concrete cracks[J].J Southeast University:Nat Sci Ed,2013,43(2):360(in Chinese).
钱春香,李瑞阳,潘庆峰,等.混凝土裂缝的微生物自修复效果[J]. 东南大学学报:自然科学版,2013,43(2):360.
10 Zhou Lincheng,Li Yanfeng,Hou Yingfeng,et al.Study on immobilized microorganism based on macroporous carrier and application for wastewater treatment[J].Ion Exchange Adsorption,2007,23(6):531(in Chinese).
周林成,李彦锋,侯英凤,等.大孔载体固定化微生物处理污水研究[J].离子交换与吸附,2007,23(6):531.
11 Jonkers H M, Schlangen E.Crack repair by concrete-immobilized bacteria[C]∥ Proceedings of the First International Conference on Self-healing Materials.Noordwijk aan Zee, Netherlands,2007:1.
12 Guo Hongyun.Design of mixture ratio of pottery grain concrete[J].J Wuhan University:Eng,2007,40(S):522(in Chinese).
郭宏云.陶粒混凝土配合比设计[J].武汉大学学报:工学版,2007,40(S):522.
13 Kong Lijuan.Research on structure and performance ceramsite combined aggregate concrete[D].Harbin:Harbin Institute of Technology,2008(in Chinese).
孔丽娟.陶粒混合骨料混凝土结构与性能研究[D].哈尔滨:哈尔滨工业大学,2008.
14 Lo T Y,Cui H Z,Li Z G.Influence of aggregate pre-wetting and fly ash on mechanical properties of lightweight concrete[J].Waste Ma-nagement,2004,24(4):333.
15 Zemskov S V,Jonkers H M,Vermolen F J.An analytical model for the probability characteristics of a crack hitting an encapsulated self-healing agent in concrete[J].Lecture Notes Computer Sci,2010,6244:280.
[1] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[2] 李地红, 夏娴, 王艳君, 张景卫, 许国栋. 镶嵌式混凝土构件加固、补强、修复技术研究[J]. 材料导报, 2019, 33(z1): 225-228.
[3] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[4] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[5] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[6] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[7] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[8] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[9] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[10] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[11] 李霖皓, 龙广成, 刘芳萍, 石晔, 马聪, 谢友均. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8): 1322-1327.
[12] 周莹, 肖利吉, 姚丽, 徐祖顺. 自修复型超疏水材料研究进展[J]. 材料导报, 2019, 33(7): 1234-1242.
[13] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[14] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[15] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed