Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 127-131    https://doi.org/10.11896/j.issn.1005-023X.2017.014.027
  材料研究 |
陶粒负载微生物的混凝土开裂自修复研究*
徐晶, 王彬彬
同济大学先进土木工程材料教育部重点实验室, 上海 201804;
Research on Self-healing of Concrete Cracks by Ceramsite Immobilized Microorganism
XU Jing, WANG Binbin
Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education,Tongji University, Shanghai 201804;
下载:  全 文 ( PDF ) ( 1401KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用多孔陶粒作为微生物载体,在评价修复剂与混凝土基体的相容性以及优选陶粒掺量的基础上,分别从力学性能和耐久性角度对混凝土开裂的微生物自修复进行了研究。结果表明:自修复剂中的牛肉膏和蛋白胨对混凝土有负面影响,而尿素和硝酸钙的影响不大。陶粒体积分数为37.8%时可作为最佳掺量。将微生物芽孢及有机营养组分负载于陶粒中并掺入混凝土,经开裂破坏的试件在28 d养护自修复后,其抗压强度恢复率接近63%,吸水率显著低于基准组,可观察到裂缝被微生物矿化形成的方解石型碳酸钙沉淀填充,裂缝最大修复宽度约为0.51 mm。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐晶
王彬彬
关键词:  微生物  混凝土  裂缝  自修复  陶粒    
Abstract: Porous ceramsite was used as microbial carrier. Based on the evaluation of compatibility between healing agents and concrete, and an optimal selection of ceramsite content, the self-healing of concrete cracks by bacteria was studied in view of mechanical performance and durability. Results indicate that beef extract and peptone in self-healing agents have a negative effect on concrete, while the effect of urea and calcium nitrate is insignificant. The optimum volume ratio of ceramsite is determined as 37.8%. The ceramsite immobilized with bacteria and organic nutrients is added to concrete. After 28 days curing for self-healing, the recovery ratio of compressive strength of the cracked concrete reaches about 63%, and its water absorption is significantly lower than that of the controlled sample. It can be observed that cracks are filled with calcite type calcium carbonate produced by microbial mineralization, and the maximum crack width can be healed is about 0.51 mm.
Key words:  microorganism    concrete    crack    self-healing    ceramsite
出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TU502  
基金资助: *国家自然科学基金(51378011)
作者简介:  徐晶:男,1984年生,博士,副研究员,主要研究方向为碳纤维水泥基智能材料、钢筋混凝土腐蚀与防护及微生物自主修复材料 E-mail:nanonewman@126.com
引用本文:    
徐晶, 王彬彬. 陶粒负载微生物的混凝土开裂自修复研究*[J]. 《材料导报》期刊社, 2017, 31(14): 127-131.
XU Jing, WANG Binbin. Research on Self-healing of Concrete Cracks by Ceramsite Immobilized Microorganism. Materials Reports, 2017, 31(14): 127-131.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.027  或          https://www.mater-rep.com/CN/Y2017/V31/I14/127
1 Jonkers H M,Thijssen A,Muyzer G,et al.Application of bacteria as self-healing agent for the development of sustainable concrete[J].Ecological Eng,2010,36(2):230.
2 Wiktor V,Jonkers H M. Quantification of crack-healing in novel bacteria-based self-healing concrete [J].Cem Concr Compos,2011,33(7):763.
3 Wang J,de Belie N,Verstraete W.Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete[J].J Ind Microbiol Biotechnol,2012,39(4):567.
4 Wang J,Tittelboom K V,de Belie N,et al.Use of silica gel or polyurethane immobilized bacteria for self-healing concrete [J].Constr Building Mater,2012,26(1):532.
5 Wang J,Soens H,Verstraete W,et al.Self-healing concrete by use of microencapsulated bacteria spores [J].Cem Concr Res,2014,56:139.
6 Wang J Y,Snoeck D,van Vlierberghe S,et al.Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete[J].Constr Building Mater,2014,68:110.
7 ErŞan Y Ç,Da Silva F B,Boon N,et al.Screening of bacteria and concrete compatible protection materials[J].Constr Building Mater,2015,88:196.
8 Wang Jianyun,Qian Chunxiang,Wang Ruixing,et al.Surface protection of cement based materials by a CaCO3 layer produced by alginate-immobilized bacteria[J].J Funct Mater,2009,40(2):348(in Chinese).
王剑云,钱春香,王瑞兴,等.海藻酸钠固载菌株在水泥及材料表面防护中的应用研究[J]. 功能材料,2009,40(2):348.
9 Qian Chunxiang,Li Ruiyang,Pan Qingfeng,et al. Microbial self-healing effects of concrete cracks[J].J Southeast University:Nat Sci Ed,2013,43(2):360(in Chinese).
钱春香,李瑞阳,潘庆峰,等.混凝土裂缝的微生物自修复效果[J]. 东南大学学报:自然科学版,2013,43(2):360.
10 Zhou Lincheng,Li Yanfeng,Hou Yingfeng,et al.Study on immobilized microorganism based on macroporous carrier and application for wastewater treatment[J].Ion Exchange Adsorption,2007,23(6):531(in Chinese).
周林成,李彦锋,侯英凤,等.大孔载体固定化微生物处理污水研究[J].离子交换与吸附,2007,23(6):531.
11 Jonkers H M, Schlangen E.Crack repair by concrete-immobilized bacteria[C]∥ Proceedings of the First International Conference on Self-healing Materials.Noordwijk aan Zee, Netherlands,2007:1.
12 Guo Hongyun.Design of mixture ratio of pottery grain concrete[J].J Wuhan University:Eng,2007,40(S):522(in Chinese).
郭宏云.陶粒混凝土配合比设计[J].武汉大学学报:工学版,2007,40(S):522.
13 Kong Lijuan.Research on structure and performance ceramsite combined aggregate concrete[D].Harbin:Harbin Institute of Technology,2008(in Chinese).
孔丽娟.陶粒混合骨料混凝土结构与性能研究[D].哈尔滨:哈尔滨工业大学,2008.
14 Lo T Y,Cui H Z,Li Z G.Influence of aggregate pre-wetting and fly ash on mechanical properties of lightweight concrete[J].Waste Ma-nagement,2004,24(4):333.
15 Zemskov S V,Jonkers H M,Vermolen F J.An analytical model for the probability characteristics of a crack hitting an encapsulated self-healing agent in concrete[J].Lecture Notes Computer Sci,2010,6244:280.
[1] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[2] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[3] 陈芳, 冯奕程, 吴佳育, 关博文, 房建宏, 温小栋, 李超恩. 市政污泥陶粒制备及资源化利用研究进展[J]. 材料导报, 2025, 39(3): 23120099-9.
[4] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[5] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[6] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[7] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[8] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[9] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[10] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[11] 金伟良, 刘振东, 张军. 混凝土梁疲劳致力磁效应及数值模拟方法[J]. 材料导报, 2025, 39(1): 24010127-9.
[12] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[13] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[14] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[15] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed